This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292605 #19 Mar 24 2020 13:24:22 %S A292605 1,1,0,19,1,0,1513,166,1,0,315523,52715,1361,1,0,136085041,30543236, %T A292605 1528806,10916,1,0,105261234643,29664031413,2257312622,42421946,87375, %U A292605 1,0,132705221399353,45011574747714,4637635381695,153778143100,1156669095,699042,1,0 %N A292605 Triangle read by rows, coefficients of generalized Eulerian polynomials F_{3;n}(x). %C A292605 See the comments in A292604. %F A292605 F_{3; n}(x) = Sum_{k=0..n} A278073(n, k)*(x-1)^(n-k) for n>0 and F_{3; 0}(x) = 1. %e A292605 Triangle starts: %e A292605 [n\k][ 0 1 2 3 4 5] %e A292605 -------------------------------------------------- %e A292605 [0][ 1] %e A292605 [1][ 1, 0] %e A292605 [2][ 19, 1, 0] %e A292605 [3][ 1513, 166, 1, 0] %e A292605 [4][ 315523, 52715, 1361, 1, 0] %e A292605 [5][ 136085041, 30543236, 1528806, 10916, 1, 0] %p A292605 Coeffs := f -> PolynomialTools:-CoefficientList(expand(f),x): %p A292605 A292605_row := proc(n) if n = 0 then return [1] fi; %p A292605 add(A278073(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end: %p A292605 for n from 0 to 6 do A292605_row(n) od; %o A292605 (Sage) # uses[A278073_row from A278073] %o A292605 def A292605_row(n): %o A292605 if n == 0: return [1] %o A292605 L = A278073_row(n) %o A292605 S = sum(L[k]*(x-1)^(n-k) for k in (0..n)) %o A292605 return expand(S).list() + [0] %o A292605 for n in (0..5): print(A292605_row(n)) %Y A292605 F_{0} = A129186, F_{1} = A173018, F_{2} = A292604, F_{3} is this triangle, F_{4} = A292606. %Y A292605 First column: A002115. Row sums: A014606. Alternating row sums: A292609. %Y A292605 Cf. A181985, A278073. %K A292605 nonn,tabl %O A292605 0,4 %A A292605 _Peter Luschny_, Sep 20 2017