This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292606 #25 Mar 24 2020 12:36:56 %S A292606 1,1,0,69,1,0,33661,988,1,0,60376809,2669683,16507,1,0,288294050521, %T A292606 17033188586,212734266,261626,1,0,3019098162602349,223257353561605, %U A292606 4297382231090,17634518610,4196345,1,0 %N A292606 Triangle read by rows, coefficients of generalized Eulerian polynomials F_{4;n}(x). %C A292606 See the comments in A292604. %F A292606 F_{4; n}(x) = Sum_{k=0..n} A278074(n, k)*(x-1)^(n-k) for n>0 and F_{4; 0}(x) = 1. %e A292606 Triangle starts: %e A292606 [n\k][ 0 1 2 3 4 5] %e A292606 -------------------------------------------------- %e A292606 [0] [ 1] %e A292606 [1] [ 1, 0] %e A292606 [2] [ 69, 1, 0] %e A292606 [3] [ 33661, 988, 1, 0] %e A292606 [4] [ 60376809, 2669683, 16507, 1, 0] %e A292606 [5] [288294050521, 17033188586, 212734266, 261626, 1, 0] %p A292606 Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x): %p A292606 A292606_row := proc(n) if n = 0 then return [1] fi; %p A292606 add(A278074(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end: %p A292606 for n from 0 to 6 do A292606_row(n) od; %o A292606 (Sage) # uses[A278074_row from A278074] %o A292606 def A292606_row(n): %o A292606 if n == 0: return [1] %o A292606 L = A278074_row(n) %o A292606 S = sum(L[k]*(x-1)^(n-k) for k in (0..n)) %o A292606 return expand(S).list() + [0] %o A292606 for n in (0..5): print(A292606_row(n)) %Y A292606 F_{0} = A129186, F_{1} = A173018, F_{2} = A292604, F_{3} = A292605, F_{4} is this triangle. %Y A292606 First column: A211212. Row sums: A014608. Alternating row sums: A292607. %Y A292606 Cf. A181985. %K A292606 nonn,tabl %O A292606 0,4 %A A292606 _Peter Luschny_, Sep 26 2017