This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292627 #40 Aug 18 2025 09:34:46 %S A292627 1,1,0,1,1,2,1,2,3,0,1,3,6,7,6,1,4,11,20,19,0,1,5,18,45,70,51,20,1,6, %T A292627 27,88,195,252,141,0,1,7,38,155,454,873,924,393,70,1,8,51,252,931, %U A292627 2424,3989,3432,1107,0,1,9,66,385,1734,5775,13236,18483,12870,3139,252,1,10,83,560,2995,12276,36645,73392,86515,48620,8953,0 %N A292627 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)*BesselI(0,2*x). %C A292627 A(n,k) is the k-th binomial transform of A126869 evaluated at n. %H A292627 Seiichi Manyama, <a href="/A292627/b292627.txt">Antidiagonals n = 0..139, flattened</a> %H A292627 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A292627 O.g.f. of column k: 1/sqrt( (1 - (k-2)*x)*(1 - (k+2)*x) ). %F A292627 E.g.f. of column k: exp(k*x)*BesselI(0,2*x). %F A292627 From _Seiichi Manyama_, May 01 2019: (Start) %F A292627 A(n,k) is the coefficient of x^n in the expansion of (1 + k*x + x^2)^n. %F A292627 A(n,k) = Sum_{j=0..n} (k-2)^(n-j) * binomial(n,j) * binomial(2*j,j). %F A292627 A(n,k) = Sum_{j=0..n} (k+2)^(n-j) * (-1)^j * binomial(n,j) * binomial(2*j,j). %F A292627 n * A(n,k) = k * (2*n-1) * A(n-1,k) - (k^2-4) * (n-1) * A(n-2,k). (End) %F A292627 A(n,k) = Sum_{j=0..floor(n/2)} k^(n-2*j) * binomial(n,2*j) * binomial(2*j,j). - _Seiichi Manyama_, May 04 2019 %F A292627 T(n,k) = (1/Pi) * Integral_{x = -1..1} (k - 2 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (k + 2 - 4*x^2)^n/sqrt(1 - x^2) dx. - _Peter Bala_, Jan 27 2020 %F A292627 A(n,k) = (1/4)^n * Sum_{j=0..n} (k-2)^j * (k+2)^(n-j) * binomial(2*j,j) * binomial(2*(n-j),n-j). - _Seiichi Manyama_, Aug 18 2025 %e A292627 E.g.f. of column k: A_k(x) = 1 + k*x/1! + (k^2 + 2)*x^2/2! + (k^3 + 6*k)*x^3/3! + (k^4 + 12*k^2 + 6)*x^4/4! + (k^5 + 20*k^3 + 30*k)*x^5/5! + ... %e A292627 Square array begins: %e A292627 1, 1, 1, 1, 1, 1, ... %e A292627 0, 1, 2, 3, 4, 5, ... %e A292627 2, 3, 6, 11, 18, 27, ... %e A292627 0, 7, 20, 45, 88, 155, ... %e A292627 6, 19, 70, 195, 454, 931, ... %e A292627 0, 51, 252, 873, 2424, 5775, ... %t A292627 Table[Function[k, n! SeriesCoefficient[Exp[k x] BesselI[0, 2 x], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten %t A292627 Table[Function[k, SeriesCoefficient[1/Sqrt[(1 + 2 x - k x) (1 - 2 x - k x)], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten %Y A292627 Columns k=0..7 give A126869, A002426, A000984, A026375, A081671, A098409, A098410, A104454. %Y A292627 Rows n=0..2 give A000012, A001477, A059100. %Y A292627 Main diagonal gives A186925. %Y A292627 Cf. A292628, A307847. %K A292627 nonn,tabl %O A292627 0,6 %A A292627 _Ilya Gutkovskiy_, Sep 20 2017