This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292629 #18 May 03 2019 03:04:47 %S A292629 0,1,4,30,304,3885,59976,1085973,22571200,529712667,13856212600, %T A292629 399773871068,12612288989664,431948624278795,15960564546516240, %U A292629 632898895109081310,26809122466181751552,1208177444352064438155,57719104861915100554200,2913802658820378870546498,154991214138728849712151200 %N A292629 a(n) = n! * [x^n] exp(n*x)*BesselI(1,2*x). %C A292629 The n-th term of the n-th binomial transform of A138364. %H A292629 Seiichi Manyama, <a href="/A292629/b292629.txt">Table of n, a(n) for n = 0..386</a> %H A292629 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A292629 a(n) = A292628(n,n). %F A292629 a(n) ~ BesselI(1,2) * n^n. - _Vaclav Kotesovec_, Sep 20 2017 %F A292629 a(n) = [x^(n-1)] (1+n*x+x^2)^n = [x^(n+1)] (1+n*x+x^2)^n. - _Seiichi Manyama_, May 01 2019 %t A292629 Table[n!*SeriesCoefficient[E^(n*x)*BesselI[1,2*x],{x,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Sep 20 2017 *) %o A292629 (PARI) a(n) = polcoef((1+n*x+x^2)^n, n-1); \\ _Michel Marcus_, May 01 2019 %Y A292629 Main diagonal of A292628. %Y A292629 Cf. A138364, A186925. %K A292629 nonn %O A292629 0,3 %A A292629 _Ilya Gutkovskiy_, Sep 20 2017