cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A375804 a(n) = Lucas(n-1) * Lucas(n+1) * Fibonacci(2*n-1) * Fibonacci(2*n+1).

Original entry on oeis.org

12, 40, 1365, 19448, 381276, 6615103, 120241980, 2147070680, 38600066517, 692153278024, 12423591148332, 222908960952575, 4000098954110700, 71777766990248968, 1288007282149222101, 23112301389881302808, 414733773612913239420, 7442093184423393874495, 133542960264663589170972
Offset: 1

Views

Author

Amiram Eldar, Aug 29 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := LucasL[n-1] * LucasL[n+1] * Fibonacci[2*n-1] * Fibonacci[2*n+1]; Array[a, 20]
  • PARI
    lucas(n) = fibonacci(n-1) + fibonacci(n+1);
    a(n) = lucas(n-1) * lucas(n+1) * fibonacci(2*n-1) * fibonacci(2*n+1);

Formula

a(n) = A292696(n) * A064170(n+2).
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(5) - 2)/ 4 = A204188 - 1/2 (Ohtskua, 2024).
G.f.: -x^2*(-20+65*x+195*x^2-84*x^3-13*x^4+x^5)/ ( (1+x) *(x^2-3*x+1) *(x^2+7*x+1) *(x^2-18*x+1) ). - R. J. Mathar, Aug 30 2024
Showing 1-1 of 1 results.