This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292729 #25 Nov 05 2024 18:56:52 %S A292729 0,1,1,3,4,4,8,10,11,12,16,20,22,24,27,31,35,38,43,45,47,52,57,62,67, %T A292729 71,74,79,83,90,95,101,106,111,114,118,126,132,138,146,152,156,161, %U A292729 167,172,180,189,194,204,208,216,221,228,234,242,249,258,264,274,282 %N A292729 a(n) is the maximum number of steps that can occur during the following procedure: start with n piles each containing one stone; any number of stones can be transferred between piles of equal size. %C A292729 Note that more than one stone can be moved during a single move. %C A292729 A121924 is the analogous sequence if only one stone can be transferred between piles of equal size. %C A292729 A011371 is the analogous sequence if all stones must be transferred between piles of equal size (i.e., the number of stones in each pile must be a power of two). %C A292729 Both A121924 and A011371 are lower bounds for this sequence. %e A292729 For n = 7, an 8-move sequence is: %e A292729 (1 1 1 1 1 1 1) -> (2 1 1 1 1 1) -> (2 2 1 1 1) -> (3 1 1 1 1) -> (3 2 1 1) -> (3 2 2) -> (3 3 1) -> (5, 1, 1) -> (5 2). %o A292729 (Python) %o A292729 def A292729(n): %o A292729 s_in = set([(1, )*n]) %o A292729 count=-1 %o A292729 while len(s_in) > 0: %o A292729 s_out = set() %o A292729 for s in s_in: %o A292729 last = -1 ; idx = 0 %o A292729 while (idx+1) < len(s): %o A292729 h = s[idx] %o A292729 if h!=last and s[idx+1]==h: %o A292729 for q in range(1, h+1): %o A292729 lst = list(s[:idx]) + list(s[idx+2:]) %o A292729 lst += [2*h] if h==q else [ h-q, h+q] %o A292729 t = tuple(sorted(lst)) %o A292729 if not t in s_out: %o A292729 s_out.add(t) %o A292729 last = s[idx] ; idx += 1 %o A292729 count += 1 %o A292729 s_in = s_out %o A292729 return count %o A292729 # _Bert Dobbelaere_, Jul 14 2019 %Y A292729 Cf. A011371, A121924, A292726, A292728. %K A292729 nonn %O A292729 1,4 %A A292729 _Peter Kagey_, Sep 22 2017 %E A292729 a(35)-a(60) from _Bert Dobbelaere_, Jul 14 2019