This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292744 #8 Sep 30 2017 06:15:45 %S A292744 1,3,14,64,294,1346,6166,28242,129362,592538,2714096,12431808, %T A292744 56943398,260826950,1194707382,5472309246,25065693008,114812401444, %U A292744 525893599720,2408834540066,11033569993066,50538824799712,231491059896394,1060335514811206,4856824295820082,22246488881086116 %N A292744 a(0) = 1; a(n) = Sum_{k=1..n} prime(k+1)*a(n-k). %C A292744 Invert transform of the odd primes. %C A292744 Number of compositions (ordered partitions) of n where there are prime(k+1) sorts of part k. %H A292744 M. Bernstein and N. J. A. Sloane, <a href="http://arXiv.org/abs/math.CO/0205301">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72. Erratum 320 (2000), 210. [Link to arXiv version] %H A292744 M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] %H A292744 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A292744 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %F A292744 G.f.: 1/(1 - Sum_{k>=1} prime(k+1)*x^k). %t A292744 a[0] = 1; a[n_] := a[n] = Sum[Prime[k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 25}] %t A292744 nmax = 25; CoefficientList[Series[1/(1 - Sum[Prime[k + 1] x^k, {k, 1, nmax}]), {x, 0, nmax}], x] %o A292744 (PARI) t=26; Vec(1/(1-sum(k=1, t, prime(k+1)*x^k)) + O(x^t)) \\ _Felix Fröhlich_, Sep 22 2017 %Y A292744 Cf. A030017, A060801, A065091. %K A292744 nonn %O A292744 0,2 %A A292744 _Ilya Gutkovskiy_, Sep 22 2017