This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292745 #22 Oct 20 2018 14:16:22 %S A292745 1,1,0,1,1,1,1,1,2,1,1,1,3,3,2,1,1,3,6,5,2,1,1,3,7,13,7,4,1,1,3,7,19, %T A292745 26,11,4,1,1,3,7,20,52,54,15,7,1,1,3,7,20,62,151,108,22,8,1,1,3,7,20, %U A292745 63,217,442,219,30,12,1,1,3,7,20,63,232,803,1314,439,42,14 %N A292745 Number A(n,k) of partitions of n with k sorts of part 1 which are introduced in ascending order; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A292745 Alois P. Heinz, <a href="/A292745/b292745.txt">Antidiagonals n = 0..140, flattened</a> %F A292745 A(n,k) = Sum_{j=0..k} A292746(n,j). %F A292745 A(n,k) = A(n,n) for all k >= n. %e A292745 A(3,2) = 6: 3, 21a, 1a1a1a, 1a1a1b, 1a1b1a, 1a1b1b. %e A292745 Square array A(n,k) begins: %e A292745 1, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A292745 0, 1, 1, 1, 1, 1, 1, 1, 1, ... %e A292745 1, 2, 3, 3, 3, 3, 3, 3, 3, ... %e A292745 1, 3, 6, 7, 7, 7, 7, 7, 7, ... %e A292745 2, 5, 13, 19, 20, 20, 20, 20, 20, ... %e A292745 2, 7, 26, 52, 62, 63, 63, 63, 63, ... %e A292745 4, 11, 54, 151, 217, 232, 233, 233, 233, ... %e A292745 4, 15, 108, 442, 803, 944, 965, 966, 966, ... %e A292745 7, 22, 219, 1314, 3092, 4158, 4425, 4453, 4454, ... %p A292745 f:= (n, k)-> add(Stirling2(n, j), j=0..k): %p A292745 b:= proc(n, i, k) option remember; `if`(n=0 or i<2, %p A292745 f(n, k), add(b(n-i*j, i-1, k), j=0..n/i)) %p A292745 end: %p A292745 A:= (n, k)-> b(n$2, k): %p A292745 seq(seq(A(n, d-n), n=0..d), d=0..14); %t A292745 f[n_, k_] := Sum[StirlingS2[n, j], {j, 0, k}]; %t A292745 b[n_, i_, k_] := b[n, i, k] = If[n == 0 || i < 2, f[n, k], Sum[b[n - i*j, i - 1, k], {j, 0, n/i}]]; %t A292745 A[n_, k_] := b[n, n, k]; %t A292745 Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, May 17 2018, translated from Maple *) %Y A292745 Columns k=0-10 give: A002865, A000041, A320733, A320734, A320735, A320736, A320737, A320738, A320739, A320740, A320741. %Y A292745 Main diagonal gives A292503. %Y A292745 Cf. A292508, A292622, A292741, A292746. %K A292745 nonn,tabl %O A292745 0,9 %A A292745 _Alois P. Heinz_, Sep 22 2017