This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292754 #21 Jun 02 2019 03:41:25 %S A292754 1,-1,5,-11,83,-143,625,-1843,24323,61477,-14165,-8084893,31181719, %T A292754 1682401061,-3166220215,-251783137859,3865962456803,394670372519917, %U A292754 -765052915887545,-98394908192751193,384080734825119709,60838795345430052431,-119312155199695296505,-22845758944383820991909 %N A292754 Numerators of coefficients in an asymptotic expansion of the Wallis sequence in inverse powers of n. %D A292754 Chao-Ping Chen, Richard B. Paris, On the asymptotic expansions of products related to the Wallis, Weierstrass, and Wilf formulas, Applied Mathematics and Computation 293 (2017) 30-39. See (3.12). %H A292754 Chao-Ping Chen, Richard B. Paris, <a href="https://arxiv.org/abs/1511.09217">On the asymptotic expansions of products related to the Wallis, Weierstrass, and Wilf formulas</a>, arXiv:1511.09217 [math.CA], 2015. See (3.12). %F A292754 See (3.8) and (3.11) in Chen link. %t A292754 nu[j_] := (-1)^(j+1) ((4 - 2^(1-j)) BernoulliB[j+1] - (j+1) 2^(-j))/(j*(j + 1)); mu[j_] := mu[j] = If[j == 0, 1, Sum[k nu[k] mu[j-k], {k, j}]/j]; Table[Numerator@mu@n, {n, 0, 23}] (* _Giovanni Resta_, May 29 2019 *) %t A292754 Numerator[CoefficientList[Series[16^n/(Pi*(2*n + 1) * Binomial[2*n, n]^2), {n, Infinity, 20}], 1/n]] (* _Vaclav Kotesovec_, Jun 02 2019 *) %o A292754 (PARI) nu(j) = (-1)^(j+1)*((4-2^(1-j))*bernfrac(j+1) - (j+1)*2^(-j))/(j*(j+1)); %o A292754 mu(j) = if (j==0, 1, sum(k=1, j, k*nu(k)*mu(j-k))/j); %o A292754 a(n) = numerator(mu(n)); \\ _Michel Marcus_, May 29 2019 %Y A292754 Cf. A088802 or A123854 (denominators). %K A292754 sign %O A292754 0,3 %A A292754 _N. J. A. Sloane_, Sep 25 2017 %E A292754 More terms from _Michel Marcus_, May 29 2019