cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292754 Numerators of coefficients in an asymptotic expansion of the Wallis sequence in inverse powers of n.

This page as a plain text file.
%I A292754 #21 Jun 02 2019 03:41:25
%S A292754 1,-1,5,-11,83,-143,625,-1843,24323,61477,-14165,-8084893,31181719,
%T A292754 1682401061,-3166220215,-251783137859,3865962456803,394670372519917,
%U A292754 -765052915887545,-98394908192751193,384080734825119709,60838795345430052431,-119312155199695296505,-22845758944383820991909
%N A292754 Numerators of coefficients in an asymptotic expansion of the Wallis sequence in inverse powers of n.
%D A292754 Chao-Ping Chen, Richard B. Paris, On the asymptotic expansions of products related to the Wallis, Weierstrass, and Wilf formulas, Applied Mathematics and Computation 293 (2017) 30-39. See (3.12).
%H A292754 Chao-Ping Chen, Richard B. Paris, <a href="https://arxiv.org/abs/1511.09217">On the asymptotic expansions of products related to the Wallis, Weierstrass, and Wilf formulas</a>, arXiv:1511.09217 [math.CA], 2015. See (3.12).
%F A292754 See (3.8) and (3.11) in Chen link.
%t A292754 nu[j_] := (-1)^(j+1) ((4 - 2^(1-j)) BernoulliB[j+1] - (j+1) 2^(-j))/(j*(j + 1)); mu[j_] := mu[j] = If[j == 0, 1, Sum[k nu[k] mu[j-k], {k, j}]/j]; Table[Numerator@mu@n, {n, 0, 23}] (* _Giovanni Resta_, May 29 2019 *)
%t A292754 Numerator[CoefficientList[Series[16^n/(Pi*(2*n + 1) * Binomial[2*n, n]^2), {n, Infinity, 20}], 1/n]] (* _Vaclav Kotesovec_, Jun 02 2019 *)
%o A292754 (PARI) nu(j) = (-1)^(j+1)*((4-2^(1-j))*bernfrac(j+1) - (j+1)*2^(-j))/(j*(j+1));
%o A292754 mu(j) = if (j==0, 1, sum(k=1, j, k*nu(k)*mu(j-k))/j);
%o A292754 a(n) = numerator(mu(n)); \\ _Michel Marcus_, May 29 2019
%Y A292754 Cf. A088802 or A123854 (denominators).
%K A292754 sign
%O A292754 0,3
%A A292754 _N. J. A. Sloane_, Sep 25 2017
%E A292754 More terms from _Michel Marcus_, May 29 2019