cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292760 Expansion of e.g.f. (tan x + sec x)*(E.g.f. for A000738).

This page as a plain text file.
%I A292760 #15 Jan 05 2025 19:51:41
%S A292760 0,1,5,20,83,375,1860,10205,61701,409240,2959775,23209055,196266104,
%T A292760 1781241825,17274311925,178313963300,1952338563867,22601633554855,
%U A292760 275867860584620,3540918330014765,47682832410552965,672211363480355880,9901286664553498695,152101199645144064575
%N A292760 Expansion of e.g.f. (tan x + sec x)*(E.g.f. for A000738).
%H A292760 C. K. Cook, M. R. Bacon, and R. A. Hillman, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/55-3/CookBaconHillman01222017.pdf">Higher-order Boustrophedon transforms for certain well-known sequences</a>, Fib. Q., 55(3) (2017), 201-208.
%F A292760 a(n) ~ sinh(sqrt(5)*Pi/4) * 2^(n + 11/2) * n^(n + 3/2) / (sqrt(5) * Pi^(n + 3/2) * exp(n - Pi/4)). - _Vaclav Kotesovec_, Jun 02 2019
%t A292760 nmax = 20; FullSimplify[CoefficientList[Series[2/Sqrt[5] * E^(x/2) * Sinh[Sqrt[5]*x/2] * (Sin[x]+1)^2 / Cos[x]^2, {x, 0, nmax}], x] * Range[0, nmax]!] (* _Vaclav Kotesovec_, Jun 02 2019 *)
%Y A292760 Cf. A000045, A000738.
%K A292760 nonn
%O A292760 0,3
%A A292760 _N. J. A. Sloane_, Sep 26 2017