cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292773 a(n) is the least integer m such that any choice of m elements in (Z_3)^n contains a subset of size 3 whose sum is zero.

This page as a plain text file.
%I A292773 #24 Oct 04 2021 10:23:51
%S A292773 5,9,19,41,91,225
%N A292773 a(n) is the least integer m such that any choice of m elements in (Z_3)^n contains a subset of size 3 whose sum is zero.
%H A292773 Y. Edel, C. Elsholtz, A. Geroldinger, S. Kubertin and L. Rackham, <a href="https://imsc.uni-graz.at/geroldinger/56-zero-sum-caps.pdf">Zero-sum problems in finite abelian groups and affine caps</a>, Quarterly Journal of Mathematics 58 (2), 159-186.
%H A292773 Christian Elsholtz, <a href="https://www.math.tugraz.at/~elsholtz/WWW/papers/papers08harborth.pdf">Lower bounds for multidimensional zero sums</a>, Combinatorica 24.3 (2004): 351-358.
%H A292773 H. Harborth, <a href="https://eudml.org/doc/151373">Ein Extremalproblem für Gitterpunkte</a>, J. Reine Angew. Math. 262 (1973), 356-360.
%H A292773 Aaron Potechin, <a href="https://doi.org/10.1007/s10623-007-9132-z">Maximal caps in AG (6, 3)</a>, Designs, Codes and Cryptography volume 46, pages 243-259 (2008).
%F A292773 a(n) = 2*A090245(n) + 1, (follows from Harborth, Hilfssatz 3). - _C. Elsholtz_, Oct 04 2021
%Y A292773 Cf. A090245.
%K A292773 nonn,more
%O A292773 1,1
%A A292773 _N. J. A. Sloane_, Sep 30 2017
%E A292773 a(6), based on Potechin's paper, added by _C. Elsholtz_, Oct 04 2021