cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292783 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/sqrt(1 - 2*k*x).

This page as a plain text file.
%I A292783 #6 Sep 23 2017 10:57:05
%S A292783 1,1,0,1,1,0,1,2,3,0,1,3,12,15,0,1,4,27,120,105,0,1,5,48,405,1680,945,
%T A292783 0,1,6,75,960,8505,30240,10395,0,1,7,108,1875,26880,229635,665280,
%U A292783 135135,0,1,8,147,3240,65625,967680,7577955,17297280,2027025,0,1,9,192,5145,136080,2953125,42577920,295540245,518918400,34459425,0
%N A292783 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/sqrt(1 - 2*k*x).
%F A292783 O.g.f. of column k: 1/(1 - k*x/(1 - 2*k*x/(1 - 3*k*x/(1 - 4*k*x/(1 - 5*k*x/(1 - ...)))))), a continued fraction.
%F A292783 E.g.f. of column k: 1/sqrt(1 - 2*k*x).
%F A292783 A(n,k) = k^n*A001147(n).
%e A292783 E.g.f. of column k: A_k(x) = 1 + k*x/1! + 3*k^2*x^2/2! + 15*k^3*x^3/3! + 105*k^4*x^4/4! + 945*k^5*x^5/5! + 10395*k^6*x^6/6! +
%e A292783 Square array begins:
%e A292783 1,    1,      1,       1,       1,        1,  ...
%e A292783 0,    1,      2,       3,       4,        5,  ...
%e A292783 0,    3,     12,      27,      48,       75,  ...
%e A292783 0,   15,    120,     405,     960,     1875,  ...
%e A292783 0,  105,   1680,    8505,   26880,    65625,  ...
%e A292783 0,  945,  30240,  229635,  967680,  2953125,  ...
%t A292783 Table[Function[k, n! SeriesCoefficient[1/Sqrt[1 - 2 k x], {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
%t A292783 Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[-i k x, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
%Y A292783 Columns k=0..4 give A000007, A001147, A001813, A011781, A144828.
%Y A292783 Rows n=0.2 give A000012, A001477, A033428.
%Y A292783 Main diagonal gives A292784.
%Y A292783 Cf. A131182.
%K A292783 nonn,tabl
%O A292783 0,8
%A A292783 _Ilya Gutkovskiy_, Sep 23 2017