This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292791 #20 Oct 10 2017 10:37:21 %S A292791 -1,7,-11,199,-361,8017,-63311,10775663,-37120861,2572609327, %T A292791 -54738555011,11225458402189,-170606509547761,24269619087650437, %U A292791 -998364772178081111,1505193846304099711711,-10065529459831250937061,2427246234079407797537347,-163790353311268893725697611 %N A292791 The numerator of the real part of E(2n-1, i), where E(n, x) is the Euler polynomial. %C A292791 The imaginary part is +-i. %C A292791 The denominators are powers of two; A171977(n) = 2^A001511(n). %C A292791 For E(2n, i) see A292792. %C A292791 a(4n) == +-1 (mod 6), %C A292791 a(4n+1) == 5 (mod 6), %C A292791 a(4n+2) == 1 (mod 6), %C A292791 a(4n+3) == 1 (mod 6). %C A292791 Inspired by A291897. %H A292791 Robert G. Wilson v, <a href="/A292791/b292791.txt">Table of n, a(n) for n = 1..276</a> %e A292791 a(3) = -11 since E(5, i) = -11/2 + i. %t A292791 f[n_] := Numerator[ EulerE[2n -1, I] - I^(2n -1)]; Array[f, 19] %Y A292791 Cf. A292792. %K A292791 sign %O A292791 1,2 %A A292791 _Robert G. Wilson v_, Sep 23 2017