This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292796 #16 Jan 02 2021 12:20:01 %S A292796 1,1,3,13,60,326,2065,14508,116845,1039459,10339365,112376487, %T A292796 1339665295,17256611005,240193792120,3578746993871,56986570945387, %U A292796 963868021665359,17281651020455445,327058650473873893,6519981694119182165,136489249161324882063 %N A292796 Number of sets of nonempty words with a total of n letters over n-ary alphabet such that within each word every letter of the alphabet is at least as frequent as the subsequent alphabet letter. %H A292796 Alois P. Heinz, <a href="/A292796/b292796.txt">Table of n, a(n) for n = 0..450</a> %F A292796 a(n) = [x^n] Product_{j=1..n} (1+x^j)^A226873(j,n). %F A292796 a(n) = A292795(n,n). %F A292796 a(n) ~ c * n!, where c = A247551 = 2.529477472079152648... - _Vaclav Kotesovec_, Sep 28 2017 %e A292796 a(0) = 1: {}. %e A292796 a(1) = 1: {a}. %e A292796 a(2) = 3: {aa}, {ab}, {ba}. %e A292796 a(3) = 13: {aaa}, {aab}, {aba}, {baa}, {abc}, {acb}, {bac}, {bca}, {cab}, {cba}, {aa,a}, {ab,a}, {ba,a}. %p A292796 b:= proc(n, i, t) option remember; `if`(t=1, 1/n!, %p A292796 add(b(n-j, j, t-1)/j!, j=i..n/t)) %p A292796 end: %p A292796 g:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), n!*b(n, 0, k)): %p A292796 h:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A292796 add(h(n-i*j, i-1, k)*binomial(g(i, k), j), j=0..n/i))) %p A292796 end: %p A292796 a:= n-> h(n$3): %p A292796 seq(a(n), n=0..30); %t A292796 b[n_, i_, t_] := b[n, i, t] = If[t == 1, 1/n!, Sum[b[n - j, j, t - 1]/j!, {j, i, n/t}]]; %t A292796 g[n_, k_] := If[k == 0, If[n == 0, 1, 0], n!*b[n, 0, k]]; %t A292796 h[n_, i_, k_] := h[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[h[n - i*j, i - 1, k]*Binomial[g[i, k], j], {j, 0, n/i}]]]; %t A292796 a[n_] := h[n, n, n]; %t A292796 a /@ Range[0, 30] (* _Jean-François Alcover_, Jan 02 2021, after _Alois P. Heinz_ *) %Y A292796 Main diagonal of A292795. %Y A292796 Row sums of A319498. %Y A292796 Cf. A226873, A292713. %K A292796 nonn %O A292796 0,3 %A A292796 _Alois P. Heinz_, Sep 23 2017