cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292819 Decimal expansion of Product_{k>=1} (1 + exp(-Pi*k/2)).

This page as a plain text file.
%I A292819 #4 Sep 24 2017 09:03:54
%S A292819 1,2,7,4,3,9,4,9,8,5,6,3,5,7,9,9,3,0,7,2,0,3,5,3,3,9,7,1,9,2,2,3,0,3,
%T A292819 7,5,6,1,9,3,5,6,2,5,0,7,8,6,6,3,7,0,8,6,7,4,2,7,4,0,0,2,0,2,0,6,4,2,
%U A292819 2,0,8,4,5,5,9,8,3,9,7,4,3,7,9,4,1,6,2,4,3,8,3,7,4,8,3,4,3,5,4,0,7,3,3,9,1
%N A292819 Decimal expansion of Product_{k>=1} (1 + exp(-Pi*k/2)).
%F A292819 Equals exp(Pi/48) / (2^(1/16) * (sqrt(2)-1)^(1/4)).
%F A292819 Equals A259148 / A259147.
%e A292819 1.274394985635799307203533971922303756193562507866370867427400202064220...
%t A292819 RealDigits[E^(Pi/48) / (2^(1/16) * (Sqrt[2]-1)^(1/4)), 10, 120][[1]]
%t A292819 RealDigits[QPochhammer[-1, E^(-Pi/2)]/2, 10, 120][[1]]
%Y A292819 Cf. A259147, A292823, A292827.
%Y A292819 Cf. A292820, A292821, A292822.
%K A292819 nonn,cons
%O A292819 1,2
%A A292819 _Vaclav Kotesovec_, Sep 24 2017