cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292821 Decimal expansion of Product_{k>=1} (1 + exp(-2*Pi*k)).

This page as a plain text file.
%I A292821 #5 Mar 13 2018 12:41:42
%S A292821 1,0,0,1,8,7,0,9,4,3,1,2,3,2,7,9,8,8,6,4,6,3,5,3,4,0,8,7,9,6,7,4,1,5,
%T A292821 2,1,8,0,8,3,1,9,9,7,1,9,5,0,2,6,3,1,2,5,9,1,9,4,9,8,6,3,9,1,2,9,7,5,
%U A292821 2,1,4,0,0,9,4,4,5,5,4,6,5,7,3,8,5,3,7,9,0,4,6,9,8,4,3,9,9,0,2,9,4,0,2,6,7
%N A292821 Decimal expansion of Product_{k>=1} (1 + exp(-2*Pi*k)).
%F A292821 Equals exp(Pi/12) / 2^(3/8).
%F A292821 Equals A259150 / A259149.
%e A292821 1.001870943123279886463534087967415218083199719502631259194986391297521...
%t A292821 RealDigits[E^(Pi/12) / 2^(3/8), 10, 120][[1]]
%t A292821 RealDigits[QPochhammer[-1, E^(-2*Pi)]/2, 10, 120][[1]]
%o A292821 (PARI) exp(Pi/12)/sqrtn(8,8) \\ _Charles R Greathouse IV_, Mar 13 2018
%Y A292821 Cf. A259149, A292825, A292829, A292819, A292820, A292822.
%K A292821 nonn,cons
%O A292821 1,5
%A A292821 _Vaclav Kotesovec_, Sep 24 2017