cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292834 Numbers m, not powers of 2, such that the least prime factor of 2^m + 1 is congruent to 1 (mod m).

This page as a plain text file.
%I A292834 #34 Jun 13 2018 03:26:31
%S A292834 24,48,112,160,192,272,448,496,656,688,832,896,1088,1152,1168,1328,
%T A292834 1360,1408,1472,1520,1664,1744,1920,1984,2176,2304,2432,2560,2688,
%U A292834 2752,2816,2944,2960,3056,3072,3200,3328,3520,3664,3712,3776,4672,4864,4928,5120,5376,5552,5888,6144
%N A292834 Numbers m, not powers of 2, such that the least prime factor of 2^m + 1 is congruent to 1 (mod m).
%C A292834 Problem: are there infinitely many such numbers?
%C A292834 Theorem: there are no numbers m in the sequence such that, for each prime factor p of 2^m + 1, p == 1 (mod m).
%C A292834 Proof: if all prime factors p of 2^m + 1 are p == 1 (mod m), then 2^m + 1 == 1 (mod m), thus 2^m == 0 (mod m), so m = 2^k.
%C A292834 From Theorem in A002586, all terms are == 0 (mod 8). - _Robert G. Wilson v_, Jan 02 2018
%H A292834 Robert G. Wilson v, <a href="/A292834/b292834.txt">Table of n, a(n) for n = 1..71</a>
%t A292834 Select[Range[200], And[! IntegerQ @ Log2 @ #, Mod[FactorInteger[2^# + 1][[1, 1]], #] == 1] &] (* _Michael De Vlieger_, Sep 24 2017 *)
%t A292834 fQ[n_] := If[ OddQ@ n || IntegerQ@ Log2@ n || PrimeQ[2^n +1], False, Block[{p = 3}, While[PowerMod[2, n, p] +1 != p, p = NextPrime@ p]; Mod[p, n] == 1]] (* _Robert G. Wilson v_, Jan 01 2018 *)
%o A292834 (PARI) isok(n) = my(e = valuation(n, 2)); (2^e != n) && ((vecmin(factor(2^n+1)[,1]) % n) == 1); \\ _Michel Marcus_, Nov 13 2017
%Y A292834 Cf. A002586, A292559.
%K A292834 hard,nonn
%O A292834 1,1
%A A292834 _Thomas Ordowski_, Sep 24 2017
%E A292834 a(9)-a(15) from _Robert G. Wilson v_, Jan 01 2018
%E A292834 a(16)-a(49) from _Robert G. Wilson v_, Jan 02 2018