cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292853 Congruence-uniform lattices whose alternate order is a lattice.

This page as a plain text file.
%I A292853 #15 Aug 29 2019 16:55:43
%S A292853 1,1,0,1,1,2,3,8,16,41,107,304,891,2735
%N A292853 Congruence-uniform lattices whose alternate order is a lattice.
%C A292853 A lattice is congruence-uniform if it can be constructed from the singleton-lattice by a sequence of interval doublings. This doubling process gives rise to an alternate way of ordering the lattice elements. See the references for more details.
%H A292853 A. Day, <a href="http://dx.doi.org/10.4153/CJM-1979-008-x">Characterizations of finite lattices that are bounded-homomorphic images or sublattices of free lattices</a>, Canadian Journal of Mathematics, 31 (1979), 617-631.
%H A292853 H. Mühle, <a href="https://arxiv.org/abs/1708.02104">On the lattice property of shard orders</a>, arXiv:1708.02104 [math.CO], 2017.
%H A292853 N. Reading, <a href="http://dx.doi.org/10.1007/978-3-319-44236-5_9">Lattice theory of the poset of regions</a>, Birkhäuser, 2016, pages 465-467.
%Y A292853 Cf. A292790, A292852.
%K A292853 nonn,more
%O A292853 1,6
%A A292853 _Henri Mühle_, Sep 25 2017
%E A292853 a(13)-a(14) from _Henri Mühle_, Aug 29 2019