This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292860 #53 Dec 23 2021 06:05:32 %S A292860 1,1,0,1,1,0,1,2,2,0,1,3,6,5,0,1,4,12,22,15,0,1,5,20,57,94,52,0,1,6, %T A292860 30,116,309,454,203,0,1,7,42,205,756,1866,2430,877,0,1,8,56,330,1555, %U A292860 5428,12351,14214,4140,0,1,9,72,497,2850,12880,42356,88563,89918,21147,0 %N A292860 Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of e.g.f. exp(k*(exp(x) - 1)). %H A292860 Seiichi Manyama, <a href="/A292860/b292860.txt">Antidiagonals n = 0..139, flattened</a> %F A292860 A(0,k) = 1 and A(n,k) = k * Sum_{j=0..n-1} binomial(n-1,j) * A(j,k) for n > 0. %F A292860 A(n,k) = Sum_{j=0..n} k^j * Stirling2(n,j). - _Seiichi Manyama_, Jul 27 2019 %F A292860 A(n,k) = BellPolynomial(n, k). - _Peter Luschny_, Dec 23 2021 %e A292860 Square array begins: %e A292860 1, 1, 1, 1, 1, 1, 1, ... %e A292860 0, 1, 2, 3, 4, 5, 6, ... %e A292860 0, 2, 6, 12, 20, 30, 42, ... %e A292860 0, 5, 22, 57, 116, 205, 330, ... %e A292860 0, 15, 94, 309, 756, 1555, 2850, ... %e A292860 0, 52, 454, 1866, 5428, 12880, 26682, ... %e A292860 0, 203, 2430, 12351, 42356, 115155, 268098, ... %p A292860 A:= proc(n, k) option remember; `if`(n=0, 1, %p A292860 (1+add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k) %p A292860 end: %p A292860 seq(seq(A(n, d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Sep 25 2017 %t A292860 A[0, _] = 1; A[n_ /; n >= 0, k_ /; k >= 0] := A[n, k] = k*Sum[Binomial[n-1, j]*A[j, k], {j, 0, n-1}]; A[_, _] = 0; %t A292860 Table[A[n, d - n], {d, 0, 12}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Feb 13 2021 *) %t A292860 A292860[n_, k_] := BellB[n, k]; Table[A292860[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Peter Luschny_, Dec 23 2021 *) %Y A292860 Columns k=0-10 give: A000007, A000110, A001861, A027710, A078944, A144180, A144223, A144263, A221159, A276506, A276507. %Y A292860 Rows n=0..2 give A000012, A001477, A002378. %Y A292860 Main diagonal gives A242817. %Y A292860 Same array, different indexing is A189233. %Y A292860 Cf. A292861. %K A292860 nonn,tabl %O A292860 0,8 %A A292860 _Seiichi Manyama_, Sep 25 2017