cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292875 Expansion of the series reversion of Sum_{k>=1} x^k*k*Product_{p|k, p prime} (1 + 1/p).

This page as a plain text file.
%I A292875 #6 Feb 16 2025 08:33:51
%S A292875 1,-3,14,-81,528,-3708,27388,-209739,1650204,-13258230,108311352,
%T A292875 -896946048,7512187398,-63520243398,541511083648,-4649182740159,
%U A292875 40163784583752,-348870785898510,3045109181792304,-26694854975488554,234936349043049246,-2074958037081265050
%N A292875 Expansion of the series reversion of Sum_{k>=1} x^k*k*Product_{p|k, p prime} (1 + 1/p).
%C A292875 Reversion of g.f. for A001615 (Dedekind psi function).
%H A292875 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%H A292875 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SeriesReversion.html">Series Reversion</a>
%H A292875 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DedekindFunction.html">Dedekind Function</a>
%H A292875 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A292875 G.f. A(x) satisfies: Sum_{k>=1} A(x)^k*k*Product_{p|k, p prime} (1 + 1/p) = x.
%Y A292875 Cf. A001615, A050391.
%K A292875 sign
%O A292875 1,2
%A A292875 _Ilya Gutkovskiy_, Sep 25 2017