This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292898 #14 Jan 06 2018 18:39:54 %S A292898 1,1,0,3,2,1,8,7,5,2,31,30,27,20,9,147,146,142,129,97,44,853,852,847, %T A292898 826,755,574,265,5824,5823,5817,5786,5652,5187,3973,1854,45741,45740, %U A292898 45733,45690,45463,44462,40923,31520,14833 %N A292898 Array read by ascending antidiagonals, A(m, n) = Sum_{k=1..m}(-1)^(k-n-m)* hypergeom([k, k-n-m], [], 1) for m>=1 and n>=0. %e A292898 Array starts: %e A292898 [m\n] 0 1 2 3 4 5 6 %e A292898 ------------------------------------------------------------------- %e A292898 [1] 1, 0, 1, 2, 9, 44, 265, ... [A000166] %e A292898 [2] 1, 2, 5, 20, 97, 574, 3973, ... [A259834(n+2)] %e A292898 [3] 3, 7, 27, 129, 755, 5187, 40923, ... [A292897] %e A292898 [4] 8, 30, 142, 826, 5652, 44462, 394970, ... %e A292898 [5] 31, 146, 847, 5786, 45463, 403514, 3990679, ... %e A292898 [6] 147, 852, 5817, 45690, 405423, 4008768, 43692933, ... %e A292898 [7] 853, 5823, 45733, 405779, 4012101, 43727687, 520723477, ... %e A292898 A003470,A193464,A293295. %e A292898 Displayed as a triangle: %e A292898 [1] 1; %e A292898 [2] 1, 0; %e A292898 [3] 3, 2, 1; %e A292898 [4] 8, 7, 5, 2; %e A292898 [5] 31, 30, 27, 20, 9; %e A292898 [6] 147, 146, 142, 129, 97, 44; %e A292898 [7] 853, 852, 847, 826, 755, 574, 265; %e A292898 [8] 5824, 5823, 5817, 5786, 5652, 5187, 3973, 1854; %e A292898 A003470,A193464,A293295. %e A292898 This triangle has row sums A193463. %p A292898 A := (m, n) -> add((-1)^(k-n-m)*hypergeom([k, k-n-m], [], 1), k=1..m): %p A292898 seq(lprint(seq(simplify(A(m, n)), n=0..6)), m=1..7); %t A292898 A[m_, n_] := Sum[(-1)^(k-n-m) HypergeometricPFQ[{k, k-n-m},{}, 1], {k, 1, m} ]; %t A292898 Table[Table[A[m, n], {n,0,6}], {m,1,7}] %Y A292898 Cf. A000166, A003470, A193463, A193464, A259834, A292897, A293295. %K A292898 nonn,tabl %O A292898 0,4 %A A292898 _Peter Luschny_, Oct 05 2017