cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A292901 Triangle read by rows, a generalization of the Bernoulli numbers, the denominators for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 3, 1, 1, 2, 12, 3, 30, 1, 2, 24, 9, 20, 1, 1, 2, 48, 54, 80, 10, 42, 1, 2, 96, 324, 8640, 200, 105, 1, 1, 2, 192, 1944, 3840, 36000, 525, 35, 30, 1, 2, 384, 11664, 1244160, 720000, 756000, 3675, 168, 1
Offset: 0

Views

Author

Peter Luschny, Oct 01 2017

Keywords

Comments

See comments in A292900.

Examples

			Triangle starts:
[0], 1
[1], 1, 2
[2], 1, 2,   6
[3], 1, 2,   3,     1
[4], 1, 2,  12,     3,      30
[5], 1, 2,  24,     9,      20,      1
[6], 1, 2,  48,    54,      80,     10,     42
[7], 1, 2,  96,   324,    8640,    200,    105,    1
[8], 1, 2, 192,  1944,    3840,  36000,    525,   35,  30
[9], 1, 2, 384, 11664, 1244160, 720000, 756000, 3675, 168, 1
		

Crossrefs

Cf. A292900 (numerators), T(n, n) = A027642(n).

Programs

  • Maple
    # Function B(n,k) in A292900.
    for n from 0 to 9 do seq(denom(B(n, k)), k=0..n) od;
  • Mathematica
    B[0, 0] = 1; B[n_, k_] := Sum[(-1)^(j-n)/(j+1) Binomial[k+1, j+1] Sum[i^n (j-i+1)^(k-n), {i, 0, j}], {j, 0, k}]; Table[B[n, k] // Denominator, {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 14 2019, from Maple *)
Showing 1-1 of 1 results.