cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292914 a(n) = n! * [x^n] exp(exp(n*x)-1).

This page as a plain text file.
%I A292914 #9 Sep 26 2017 20:25:27
%S A292914 1,1,8,135,3840,162500,9471168,722247211,69457674240,8192781080883,
%T A292914 1159750000000000,193603940326506270,37568854100470136832,
%U A292914 8372811803057822746561,2121274569058397526065152,605589097505502777099609375,193324500041805946527313559552,68549156597838159410025756211308
%N A292914 a(n) = n! * [x^n] exp(exp(n*x)-1).
%H A292914 Seiichi Manyama, <a href="/A292914/b292914.txt">Table of n, a(n) for n = 0..258</a>
%F A292914 a(n) = [x^n] 1/(1 - n*x/(1 - n*x/(1 - n*x/(1 - 2*n*x/(1 - n*x/(1 - 3*n*x/(1 - n*x/(1 - 4*n*x/(1 - ...))))))))), a continued fraction.
%F A292914 a(n) = exp(-1)*n^n*Sum_{k>=0} k^n/k!.
%F A292914 a(n) = A292913(n,n).
%F A292914 a(n) = n^n * Bell(n). - _Alois P. Heinz_, Sep 26 2017
%p A292914 a:= n-> n^n * combinat[bell](n):
%p A292914 seq(a(n), n=0..20);  # _Alois P. Heinz_, Sep 26 2017
%t A292914 Table[n! SeriesCoefficient[Exp[Exp[n x] - 1], {x, 0, n}], {n, 0, 17}]
%t A292914 Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-((-1)^(k + 1) (k - 1) + k + 3) n x/4, 1, {k, 0, n}]), {x, 0, n}], {n, 0, 17}]
%t A292914 Join[{1}, Table[n^n BellB[n], {n, 1, 17}]]
%Y A292914 Main diagonal of A292913.
%Y A292914 Cf. A000110.
%K A292914 nonn
%O A292914 0,3
%A A292914 _Ilya Gutkovskiy_, Sep 26 2017