This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292948 #22 Oct 23 2018 19:18:10 %S A292948 1,1,-1,1,1,2,1,0,-1,-5,1,0,1,-2,15,1,0,0,-3,9,-52,1,0,0,1,9,-4,203,1, %T A292948 0,0,0,-4,-40,-95,-877,1,0,0,0,1,10,210,414,4140,1,0,0,0,0,-5,-10, %U A292948 -1176,49,-21147,1,0,0,0,0,1,15,-105,7273,-10088,115975,1,0,0 %N A292948 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where A(0,k) = 1 and A(n,k) = (-1)^(k+1) * Sum_{i=0..n-1} (-1)^i * binomial(n-1,i) * binomial(i+1,k) * A(n-1-i,k) for n > 0. %H A292948 Seiichi Manyama, <a href="/A292948/b292948.txt">Antidiagonals n = 0..139, flattened</a> %e A292948 Square array begins: %e A292948 1, 1, 1, 1, 1, ... %e A292948 -1, 1, 0, 0, 0, ... %e A292948 2, -1, 1, 0, 0, ... %e A292948 -5, -2, -3, 1, 0, ... %e A292948 15, 9, 9, -4, 1, ... %o A292948 (Ruby) %o A292948 def ncr(n, r) %o A292948 return 1 if r == 0 %o A292948 (n - r + 1..n).inject(:*) / (1..r).inject(:*) %o A292948 end %o A292948 def A(k, n) %o A292948 ary = [1] %o A292948 (1..n).each{|i| ary << (-1) ** (k % 2 + 1) * (0..i - 1).inject(0){|s, j| s + (-1) ** (j % 2) * ncr(i - 1, j) * ncr(j + 1, k) * ary[i - 1 - j]}} %o A292948 ary %o A292948 end %o A292948 def A292948(n) %o A292948 a = [] %o A292948 (0..n).each{|i| a << A(i, n - i)} %o A292948 ary = [] %o A292948 (0..n).each{|i| %o A292948 (0..i).each{|j| %o A292948 ary << a[i - j][j] %o A292948 } %o A292948 } %o A292948 ary %o A292948 end %o A292948 p A292948(20) %Y A292948 Columns k=0-5 give: A292935, A003725, A292909, A292910, A292912, A292950. %Y A292948 Rows n=0 gives A000012. %Y A292948 Main diagonal gives A000012. %Y A292948 Cf. A145460. %K A292948 sign,tabl,look %O A292948 0,6 %A A292948 _Seiichi Manyama_, Sep 27 2017