cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292957 Rectangular array by antidiagonals: T(n,m) = rank of n*(r+m) when all the numbers k*(r+h), where r = sqrt(3), k>=1, h>=0, are jointly ranked.

This page as a plain text file.
%I A292957 #4 Oct 05 2017 21:28:45
%S A292957 1,2,3,4,7,6,5,11,13,10,8,16,21,20,14,9,22,30,32,27,18,12,26,38,44,42,
%T A292957 36,24,15,33,49,58,61,55,46,29,17,40,59,72,78,77,69,54,34,19,47,70,87,
%U A292957 98,100,95,84,64,39,23,52,80,103,117,124,123,113,97,73
%N A292957 Rectangular array by antidiagonals:  T(n,m) = rank of n*(r+m) when all the numbers k*(r+h), where r = sqrt(3), k>=1, h>=0, are jointly ranked.
%C A292957 This is the transpose of the array at A182847.  Every positive integer occurs exactly once, so that as a sequence, this is a permutation of the positive integers.
%H A292957 Clark Kimberling, <a href="/A292957/b292957.txt">Antidiagonals n=1..60, flattened</a>
%F A292957 T(n,m) = Sum_{k=1...[n + m*n/r]} [1 - r + n*(r + m)/k], where r=sqrt(3) and [ ]=floor.
%e A292957 Northwest corner:
%e A292957 1    2     4     5     8     9     12    15
%e A292957 3    7     11    16    22    26    33    40
%e A292957 6    13    21    30    38    49    59    70
%e A292957 10   20    32    44    58    72    87    103
%e A292957 14   27    42    61    78    98    117   137
%e A292957 18   36    55    77    100   124   147   175
%e A292957 24   46    69    95    123   152   183   212
%e A292957 The numbers k*(r+h), approximately:
%e A292957 (for k=1):   1.732   2.732    3.732 ...
%e A292957 (for k=2):   3.464   5.464    7.464 ...
%e A292957 (for k=3):   5.196   8.196    12.296 ...
%e A292957 Replacing each by its rank gives
%e A292957 1    2     4
%e A292957 3    7     11
%e A292957 6    13    21
%t A292957 r = Sqrt[3]; z = 12;
%t A292957 t[n_, m_] := Sum[Floor[1 - r + n*(r + m)/k], {k, 1, Floor[n + m*n/r]}];
%t A292957 u = Table[t[n, m], {n, 1, z}, {m, 0, z}]; TableForm[u]  (* A292957 array *)
%t A292957 Table[t[n - k + 1, k - 1], {n, 1, z}, {k, n, 1, -1}] // Flatten  (* A292957 sequence *)
%Y A292957 Cf. A182801, A182847.
%K A292957 nonn,easy,tabl
%O A292957 1,2
%A A292957 _Clark Kimberling_, Oct 05 2017