A292958 Rectangular array by antidiagonals: T(n,m) = rank of n*(r+m) when all the numbers k*(r+h), where r = sqrt(5), k>=1, h>=0, are jointly ranked.
1, 2, 4, 3, 7, 8, 5, 11, 14, 12, 6, 16, 21, 22, 17, 9, 20, 29, 33, 30, 24, 10, 26, 38, 44, 45, 40, 28, 13, 32, 47, 57, 61, 59, 51, 35, 15, 37, 56, 69, 77, 80, 73, 60, 41, 18, 43, 66, 84, 94, 101, 97, 88, 71, 49, 19, 50, 76, 99, 113, 123, 124, 115, 103, 82
Offset: 1
Examples
Northwest corner: 1 2 3 5 6 9 10 13 15 4 7 11 16 20 26 32 37 43 8 14 21 29 38 47 56 66 76 12 22 33 44 57 69 84 99 112 17 30 45 61 77 94 113 132 152 24 40 59 80 101 123 146 169 194 28 51 73 97 124 150 178 206 236 35 60 88 115 147 180 212 247 282 The numbers k*(r+h), approximately: (for k=1): 2.236 3.236 4.236 ... (for k=2): 4.472 6.472 6.472 ... (for k=3): 6.708 9.708 12.708 ... Replacing each by its rank gives 1 2 3 4 7 11 8 14 21
Links
- Clark Kimberling, Antidiagonals n=1..60, flattened
Crossrefs
Cf. A182801.
Programs
Formula
T(n,m) = Sum_{k=1...[n + m*n/r]} [1 - r + n*(r + m)/k], where r=sqrt(5) and [ ]=floor.
Comments