This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292959 #6 Dec 11 2023 10:47:37 %S A292959 1,2,3,4,7,6,5,11,13,9,8,16,21,19,14,10,22,30,31,27,18,12,28,39,45,43, %T A292959 36,23,15,34,50,57,61,56,44,26,17,40,60,73,79,78,68,52,32,20,47,70,87, %U A292959 98,101,94,83,63,37,24,54,82,104,118,126,124,113,96,72 %N A292959 Rectangular array by antidiagonals: T(n,m) = rank of n*(r+m) when all the numbers k*(r+h), where r = (1+sqrt(5))/2 (the golden ratio), k>=1, h>=0, are jointly ranked. %C A292959 This is the transpose of the array at A182849. Every positive integer occurs exactly once, so that as a sequence, this is a permutation of the positive integers. %H A292959 Clark Kimberling, <a href="/A292959/b292959.txt">Antidiagonals n=1..60, flattened</a> %F A292959 T(n,m) = Sum_{k=1...[n + m*n/r]} [1 - r + n*(r + m)/k], where r=GoldenRatio and [ ]=floor. %e A292959 Northwest corner: %e A292959 1 2 4 5 8 10 12 15 %e A292959 3 7 11 16 22 28 34 40 %e A292959 6 13 21 30 39 50 60 70 %e A292959 9 19 31 45 57 73 87 104 %e A292959 14 27 43 61 79 98 118 138 %e A292959 18 36 56 78 101 126 150 176 %e A292959 23 44 68 94 124 152 184 215 %e A292959 26 52 83 113 146 181 217 255 %e A292959 The numbers k*(r+h), approximately: %e A292959 (for k=1): 1.618 2.618 3.618 ... %e A292959 (for k=2): 3.236 5.236 7.236 ... %e A292959 (for k=3): 4.854 7.854 10.854 ... %e A292959 Replacing each by its rank gives %e A292959 1 2 4 %e A292959 3 7 11 %e A292959 6 13 21 %t A292959 r = GoldenRatio; z = 12; %t A292959 t[n_, m_] := Sum[Floor[1 - r + n*(r + m)/k], {k, 1, Floor[n + m*n/r]}]; %t A292959 u = Table[t[n, m], {n, 1, z}, {m, 0, z}]; TableForm[u] (* A292959 array *) %t A292959 Table[t[n - k + 1, k - 1], {n, 1, z}, {k, n, 1, -1}] // Flatten (* A292959 sequence *) %Y A292959 Cf. A182801, A292960, A292961. %K A292959 nonn,easy,tabl %O A292959 1,2 %A A292959 _Clark Kimberling_, Oct 05 2017