cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292961 Rectangular array by antidiagonals: T(n,m) = rank of n*(r+m) when all the numbers k*(r+h), where r = -1+(1+sqrt(5))/2, k>=1, h>=0, are jointly ranked.

This page as a plain text file.
%I A292961 #6 Dec 11 2023 10:46:51
%S A292961 1,3,2,6,8,4,9,15,13,5,12,22,25,19,7,17,30,38,35,27,10,20,40,52,54,48,
%T A292961 33,11,24,49,66,74,72,61,41,14,28,58,82,93,98,91,73,46,16,32,67,96,
%U A292961 115,124,122,108,85,55,18,37,78,111,136,151,155,146,129,101
%N A292961 Rectangular array by antidiagonals:  T(n,m) = rank of n*(r+m) when all the numbers k*(r+h), where r = -1+(1+sqrt(5))/2, k>=1, h>=0, are jointly ranked.
%C A292961 Every positive integer occurs exactly once, so that as a sequence, this is a permutation of the positive integers.
%H A292961 Clark Kimberling, <a href="/A292961/b292961.txt">Antidiagonals n=1..60, flattened</a>
%F A292961 T(n,m) = Sum_{k=1...[n + m*n/r]} [1 - r + n*(r + m)/k], where r=1/GoldenRatio and [ ]=floor.
%e A292961 Northwest corner:
%e A292961 1    3    6    9    12   17   20
%e A292961 2    8    15   22   30   40   49
%e A292961 4    13   25   38   52   66   82
%e A292961 5    19   35   54   74   93   115
%e A292961 7    27   48   72   98   124  151
%e A292961 10   33   61   91   122  155  190
%e A292961 11   41   73   108  146  187  226
%e A292961 14   46   85   129  172  218  266
%e A292961 The numbers k*(r+h), approximately:
%e A292961 (for k=1):   0.618   1.618   2.618 ...
%e A292961 (for k=2):   1.236   3.236   5.236 ...
%e A292961 (for k=3):   1.854   4.854   7.854 ...
%e A292961 Replacing each k*(r+h) by its rank gives
%e A292961 1    3    6
%e A292961 2    8    15
%e A292961 4    13   25
%t A292961 r = -1+GoldenRatio; z = 12;
%t A292961 t[n_, m_] := Sum[Floor[1 - r + n*(r + m)/k], {k, 1, Floor[n + m*n/r]}];
%t A292961 u = Table[t[n, m], {n, 1, z}, {m, 0, z}]; TableForm[u]  (* A292961 array *)
%t A292961 Table[t[n - k + 1, k - 1], {n, 1, z}, {k, n, 1, -1}] // Flatten  (* A292961 sequence *)
%Y A292961 Cf. A182801, A292959, A292960.
%K A292961 nonn,easy,tabl
%O A292961 1,2
%A A292961 _Clark Kimberling_, Oct 05 2017