This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292964 #4 Oct 05 2017 21:29:39 %S A292964 1,4,2,8,10,3,13,19,16,5,17,29,32,23,6,22,40,48,44,30,7,27,52,65,68, %T A292964 58,37,9,34,63,82,93,89,72,46,11,38,76,102,118,120,108,87,53,12,43,88, %U A292964 123,144,153,149,132,101,60,14,50,99,141,171,187,189,178,155 %N A292964 Rectangular array by antidiagonals: T(n,m) = rank of n*(1/e + m) when all the numbers k*(1/e+h), for k>=1, h>=0, are jointly ranked. %C A292964 Every positive integer occurs exactly once, so that as a sequence, this is a permutation of the positive integers. %H A292964 Clark Kimberling, <a href="/A292964/b292964.txt">Antidiagonals n=1..60, flattened</a> %F A292964 T(n,m) = Sum_{k=1...[n + m*n*e]} [1 - 1/e + n*(1/e + m)/k], where [ ]=floor. %e A292964 Northwest corner: %e A292964 1 4 8 13 17 22 %e A292964 2 10 19 29 40 52 %e A292964 3 16 32 48 65 82 %e A292964 5 23 44 68 93 118 %e A292964 6 30 58 89 120 153 %e A292964 7 37 72 108 149 189 %e A292964 9 46 87 132 178 228 %e A292964 The numbers k*(1/e+h), approximately: %e A292964 (for k=1): 0.367 1.367 2.3667 ... %e A292964 (for k=2): 0.735 2.735 4.735 ... %e A292964 (for k=3): 1.103 4.103 7.103 ... %e A292964 Replacing each by its rank gives %e A292964 1 4 8 %e A292964 2 10 19 %e A292964 3 16 32 %t A292964 r = 1/E; z = 12; %t A292964 t[n_, m_] := Sum[Floor[1 - r + n*(r + m)/k], {k, 1, Floor[n + m*n/r]}]; %t A292964 u = Table[t[n, m], {n, 1, z}, {m, 0, z}]; TableForm[u] (* A292964 array *) %t A292964 Table[t[n - k + 1, k - 1], {n, 1, z}, {k, n, 1, -1}] // Flatten (* A292964 sequence *) %Y A292964 Cf. A182801, A292963. %K A292964 nonn,easy,tabl %O A292964 1,2 %A A292964 _Clark Kimberling_, Oct 05 2017