cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292969 Expansion of e.g.f. exp(x^4 * exp(-x)).

This page as a plain text file.
%I A292969 #18 Jul 10 2022 09:07:01
%S A292969 1,0,0,0,24,-120,360,-840,21840,-365904,3633840,-26619120,239512680,
%T A292969 -3943797000,69258333144,-997361197560,12707273822880,
%U A292969 -179576670930720,3215428464641760,-62865157116396384,1167555972633639480,-20756362432008412440
%N A292969 Expansion of e.g.f. exp(x^4 * exp(-x)).
%H A292969 Seiichi Manyama, <a href="/A292969/b292969.txt">Table of n, a(n) for n = 0..487</a>
%F A292969 a(n) = n! * Sum_{k=0..floor(n/4)} (-k)^(n-4*k)/(k! * (n-4*k)!). - _Seiichi Manyama_, Jul 10 2022
%p A292969 S:= series(exp(x^4*exp(-x)),x,51):
%p A292969 seq(coeff(S,x,j)*j!,j=0..50); # _Robert Israel_, Sep 28 2017
%o A292969 (PARI) x='x+O('x^66); Vec(serlaplace(exp(x^4*exp(-x))))
%o A292969 (PARI) a(n) = n!*sum(k=0, n\4, (-k)^(n-4*k)/(k!*(n-4*k)!)); \\ _Seiichi Manyama_, Jul 10 2022
%Y A292969 Column k=4 of A292973.
%Y A292969 Cf. A292979.
%K A292969 sign
%O A292969 0,5
%A A292969 _Seiichi Manyama_, Sep 27 2017