This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292975 #16 Feb 17 2021 07:28:04 %S A292975 1,1,1,1,2,1,1,3,4,2,1,4,9,9,5,1,5,16,28,24,16,1,6,25,65,93,77,61,1,7, %T A292975 36,126,272,338,294,272,1,8,49,217,645,1189,1369,1309,1385,1,9,64,344, %U A292975 1320,3380,5506,6238,6664,7936,1,10,81,513,2429,8141,18285,27365,31993,38177,50521 %N A292975 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)*(sec(x) + tan(x)). %C A292975 A(n,k) is the k-th binomial transform of A000111 evaluated at n. %C A292975 Also column k is the boustrophedon transform of powers of k. %H A292975 Alois P. Heinz, <a href="/A292975/b292975.txt">Antidiagonals n = 0..140, flattened</a> %H A292975 J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A (1996) 44-54 (<a href="http://neilsloane.com/doc/bous.txt">Abstract</a>, <a href="http://neilsloane.com/doc/bous.pdf">pdf</a>, <a href="http://neilsloane.com/doc/bous.ps">ps</a>) %H A292975 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>. %H A292975 <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a> %F A292975 E.g.f. of column k: exp(k*x)*(sec(x) + tan(x)). %e A292975 E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (k + 1)^2*x^2/2! + (k^3 + 3*k^2 + 3*k + 2)*x^3/3! + (k^4 + 4*k^3 + 6*k^2 + 8*k + 5)*x^4/4! + ... %e A292975 Square array begins: %e A292975 1, 1, 1, 1, 1, 1, ... %e A292975 1, 2, 3, 4, 5, 6, ... %e A292975 1, 4, 9, 16, 25, 36, ... %e A292975 2, 9, 28, 65, 126, 217, ... %e A292975 5, 24, 93, 272, 645, 1320, ... %e A292975 16, 77, 338, 1189, 3380, 8141, ... %p A292975 b:= proc(u, o) option remember; `if`(u+o=0, 1, %p A292975 add(b(o-1+j, u-j), j=1..u)) %p A292975 end: %p A292975 A:= proc(n, k) option remember; `if`(k=0, b(n, 0), %p A292975 add(binomial(n, j)*A(j, k-1), j=0..n)) %p A292975 end: %p A292975 seq(seq(A(n, d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Sep 27 2017 %t A292975 Table[Function[k, n! SeriesCoefficient[Exp[k x] (Sec[x] + Tan[x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten %Y A292975 Columns k=0..2 give A000111, A000667, A000752. %Y A292975 Main diagonal gives A292976. %K A292975 nonn,tabl %O A292975 0,5 %A A292975 _Ilya Gutkovskiy_, Sep 27 2017