This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292976 #11 Dec 09 2018 12:15:40 %S A292976 1,2,9,65,645,8141,124729,2247853,46584937,1091386465,28521016621, %T A292976 822514469149,25946988879053,888784357214729,32851731018695905, %U A292976 1303291334592451037,55235983848811714129,2490726416399046168993,119065442891277782378581,6014589653389306889686941 %N A292976 a(n) = n! * [x^n] exp(n*x)*(sec(x) + tan(x)). %H A292976 Alois P. Heinz, <a href="/A292976/b292976.txt">Table of n, a(n) for n = 0..386</a> %H A292976 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A292976 <a href="/index/Bo#boustrophedon">Index entries for sequences related to boustrophedon transform</a> %F A292976 a(n) = A292975(n,n). %F A292976 a(n) ~ (1 + sin(1)) / cos(1) * n^n. - _Vaclav Kotesovec_, Oct 06 2017 %p A292976 b:= proc(u, o) option remember; `if`(u+o=0, 1, %p A292976 add(b(o-1+j, u-j), j=1..u)) %p A292976 end: %p A292976 A:= proc(n, k) option remember; `if`(k=0, b(n, 0), %p A292976 add(binomial(n, j)*A(j, k-1), j=0..n)) %p A292976 end: %p A292976 a:= n-> A(n$2): %p A292976 seq(a(n), n=0..20); # _Alois P. Heinz_, Sep 27 2017 %t A292976 Table[n! SeriesCoefficient[Exp[n x] (Sec[x] + Tan[x]), {x, 0, n}], {n, 0, 20}] %Y A292976 Main diagonal of A292975. %Y A292976 Cf. A000111. %K A292976 nonn %O A292976 0,2 %A A292976 _Ilya Gutkovskiy_, Sep 27 2017