This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292977 #10 Mar 08 2018 13:19:45 %S A292977 1,1,1,1,0,2,1,-1,1,6,1,-2,2,2,24,1,-3,5,-2,9,120,1,-4,10,-12,8,44, %T A292977 720,1,-5,17,-34,33,8,265,5040,1,-6,26,-74,120,-78,112,1854,40320,1, %U A292977 -7,37,-138,329,-424,261,656,14833,362880,1,-8,50,-232,744,-1480,1552,-360,5504,133496,3628800 %N A292977 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(-k*x)/(1 - x). %C A292977 A(n,k) is the k-th inverse binomial transform of A000142 evaluated at n. %C A292977 Can be considered as extension of the array A089258 to columns with negative indices via A089258(n,k) = A(n,-k) or, vice versa, A(n,k) = A089258(n,-k). - _Max Alekseyev_, Mar 06 2018 %H A292977 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %F A292977 T(n, k) = n! * Sum_{j=0..n} (-k)^j/j!. - _Max Alekseyev_, Mar 06 2018 %F A292977 E.g.f. of column k: exp(-k*x)/(1 - x). %e A292977 Square array begins: %e A292977 n=0: 1, 1, 1, 1, 1, 1, ... %e A292977 n=1: 1, 0, -1, -2, -3, -4, ... %e A292977 n=2: 2, 1, 2, 5, 10, 17, ... %e A292977 n=3: 6, 2, -2, -12, -34, -74, ... %e A292977 n=4: 24, 9, 8, 33, 120, 329, ... %e A292977 n=5: 120, 44, 8, -78, -424, -1480, ... %e A292977 ... %e A292977 E.g.f. of column k: A_k(x) = 1 + (1 - k)*x/1! + (k^2 - 2*k + 2)*x^2/2! + (-k^3 + 3*k^2 - 6*k + 6) x^3/3! + (k^4 - 4*k^3 + 12*k^2 - 24*k + 24)*x^4/4! + ... %t A292977 Table[Function[k, n! SeriesCoefficient[Exp[-k x]/(1 - x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten %t A292977 FullSimplify[Table[Function[k, Exp[-k] Gamma[n + 1, -k]][j - n], {j, 0, 10}, {n, 0, j}]] // Flatten %Y A292977 Columns: A000142 (k=0), A000166 (k=1), A000023 (k=2), A010843 (k=3, with offset 0). %Y A292977 Main diagonal: A134095 (absolute values). %Y A292977 Cf. A080955, A089258. %K A292977 sign,tabl %O A292977 0,6 %A A292977 _Ilya Gutkovskiy_, Sep 27 2017