This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A292978 #24 Jul 10 2022 09:41:15 %S A292978 1,1,1,1,1,2,1,0,3,5,1,0,2,10,15,1,0,0,6,41,52,1,0,0,6,24,196,203,1,0, %T A292978 0,0,24,140,1057,877,1,0,0,0,24,60,870,6322,4140,1,0,0,0,0,120,480, %U A292978 5922,41393,21147,1,0,0,0,0,120,360,5250,45416,293608,115975 %N A292978 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = k! * Sum_{i=0..n-1} binomial(n-1,i) * binomial(i+1,k) * T(n-1-i,k) for n > 0. %H A292978 Seiichi Manyama, <a href="/A292978/b292978.txt">Antidiagonals n = 0..139, flattened</a> %F A292978 T(n,k) = n! * Sum_{j=0..floor(n/k)} j^(n-k*j)/(j! * (n-k*j)!) for k > 0. - _Seiichi Manyama_, Jul 10 2022 %e A292978 Square array begins: %e A292978 1, 1, 1, 1, 1, ... %e A292978 1, 1, 0, 0, 0, ... %e A292978 2, 3, 2, 0, 0, ... %e A292978 5, 10, 6, 6, 0, ... %e A292978 15, 41, 24, 24, 24, ... %o A292978 (Ruby) %o A292978 def f(n) %o A292978 return 1 if n < 2 %o A292978 (1..n).inject(:*) %o A292978 end %o A292978 def ncr(n, r) %o A292978 return 1 if r == 0 %o A292978 (n - r + 1..n).inject(:*) / (1..r).inject(:*) %o A292978 end %o A292978 def A(k, n) %o A292978 ary = [1] %o A292978 (1..n).each{|i| ary << f(k) * (0..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ncr(j + 1, k) * ary[i - 1 - j]}} %o A292978 ary %o A292978 end %o A292978 def A292978(n) %o A292978 a = [] %o A292978 (0..n).each{|i| a << A(i, n - i)} %o A292978 ary = [] %o A292978 (0..n).each{|i| %o A292978 (0..i).each{|j| %o A292978 ary << a[i - j][j] %o A292978 } %o A292978 } %o A292978 ary %o A292978 end %o A292978 p A292978(20) %Y A292978 Columns k=0-4 give: A000110, A000248, A216507, A292889, A292979. %Y A292978 Rows n=0 gives A000012. %Y A292978 Main diagonal gives A000142. %Y A292978 Cf. A292973. %K A292978 nonn,tabl %O A292978 0,6 %A A292978 _Seiichi Manyama_, Sep 27 2017