A292983 Bi-unitary highly abundant numbers: numbers n such that bsigma(n) > bsigma(m) for all m < n, where bsigma is the sum of the bi-unitary divisors function (A188999).
1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 21, 22, 24, 30, 40, 42, 48, 54, 66, 72, 78, 88, 96, 120, 160, 168, 210, 216, 240, 264, 312, 330, 360, 378, 384, 408, 456, 480, 600, 648, 672, 840, 1056, 1080, 1320, 1512, 1560, 1680, 1848, 1920, 2040, 2184, 2280, 2640
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..569 (terms below 10^10)
Programs
-
Mathematica
f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] := DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; a = {}; bmax = 0; Do[b = bsigma[n]; If[b > bmax, AppendTo[a, n]; bmax = b], {n, 3000}]; a (* after Michael De Vlieger at A188999 *)
Comments