cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A292984 Bi-unitary superabundant numbers: numbers n such that bsigma(n)/n > bsigma(m)/m for all m < n, where bsigma is the sum of the bi-unitary divisors function (A188999).

This page as a plain text file.
%I A292984 #18 Dec 06 2018 04:38:33
%S A292984 1,2,6,24,96,120,480,840,3360,7560,30240,83160,332640,1081080,4324320,
%T A292984 17297280,69189120,73513440,294053760,1176215040,1396755360,5587021440
%N A292984 Bi-unitary superabundant numbers: numbers n such that bsigma(n)/n > bsigma(m)/m for all m < n, where bsigma is the sum of the bi-unitary divisors function (A188999).
%C A292984 Analogous to superabundant numbers (A004394) with bi-unitary sigma (A188999) instead of sigma (A000203).
%C A292984 The least bi-unitary k-abundant number (bsigma(m)/m > k*m) for k = 1, 2, ... is 1, 24, 480, 83160, 294053760. - _Amiram Eldar_, Dec 05 2018
%t A292984 fun[p_,e_]:=If[OddQ[e],(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2)];bsigma[n_] := If[n==1,1,Times @@ (fun @@@ FactorInteger[n])]; a = {}; rmax = 0; Do[r = bsigma[n]/n; If[r > rmax, AppendTo[a, n]; rmax = r], {n, 1000}]; a
%Y A292984 Cf. A004394, A188999.
%K A292984 nonn,more
%O A292984 1,2
%A A292984 _Amiram Eldar_, Sep 27 2017
%E A292984 a(14)-a(22) from _Amiram Eldar_, Dec 06 2018