A292987 Beatty sequence of the real root of x^5 - x^4 - x^2 - 1; complement of A292988.
1, 3, 4, 6, 7, 9, 10, 12, 14, 15, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 32, 34, 36, 37, 39, 40, 42, 43, 45, 47, 48, 50, 51, 53, 54, 56, 58, 59, 61, 62, 64, 65, 67, 69, 70, 72, 73, 75, 76, 78, 80, 81, 83, 84, 86, 87, 89, 91, 92, 94, 95, 97, 98, 100, 102, 103, 105, 106, 108, 109, 111, 113, 114, 116, 117, 119, 120, 122, 124, 125, 127, 128, 130, 131, 133, 135, 136, 138, 139, 141, 142, 144, 146, 147, 149, 150, 152, 153, 155, 157, 158, 160, 161, 163, 164, 166, 168, 169, 171, 172, 174, 175, 177, 178
Offset: 1
Keywords
Examples
a(2) = floor(2 * 1.5701...) = floor(3.1402...) = 3.
Links
- Eric Weisstein's World of Mathematics, Beatty Sequence
- Index entries for sequences related to Beatty sequences
Programs
-
Mathematica
r = N[Root[#^5 - #^4 - #^2 - 1 &, 1], 64]; Array[ Floor[r #] &, 70] (* Robert G. Wilson v, Dec 10 2017 *)
-
PARI
a(n) = floor(n*solve(x=1, 2, x^5 - x^4 - x^2 - 1))
Formula
a(n) = floor(n * r), where r = 1.57014731219605436291... (see A293506).
Comments