This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293006 #22 Sep 19 2018 04:05:45 %S A293006 0,0,2,8,24,68,188,516,1412,3860,10548,28820,78740,215124,587732, %T A293006 1605716,4386900,11985236,32744276,89459028,244406612,667731284, %U A293006 1824275796,4984014164,13616579924,37201188180,101635536212,277673448788,758617970004,2072582837588 %N A293006 Expansion of 2*x^2*(x+1) / (2*x^3-3*x+1). %C A293006 Number of associative, quasitrivial, and order-preserving binary operations on the n-element set {1,...,n} that have annihilator elements. %H A293006 Robert Israel, <a href="/A293006/b293006.txt">Table of n, a(n) for n = 0..2289</a> %H A293006 M. Couceiro, J. Devillet, and J.-L. Marichal, <a href="http://arxiv.org/abs/1709.09162">Quasitrivial semigroups: characterizations and enumerations</a>, arXiv:1709.09162 [math.RA] (2017). %H A293006 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-2). %F A293006 a(n) = 2*A293005(n-1), a(0) = 0. %F A293006 From _Colin Barker_, Sep 28 2017: (Start) %F A293006 a(n) = (-8 + (1-sqrt(3))^(1+n) + (1+sqrt(3))^(1+n)) / 6 for n>0. %F A293006 a(n) = 3*a(n-1) - 2*a(n-2) for n>3. %F A293006 (End) %p A293006 f:= gfun:-rectoproc({a(n) = 3*a(n-1) - 2*a(n-3),a(0)=0,a(1)=0,a(2)=2,a(3)=8},a(n),remember): %p A293006 map(f, [$0..100]); # _Robert Israel_, Sep 28 2017 %t A293006 Join[{0}, LinearRecurrence[{3, 0, -2}, {0, 2, 8}, 30]] (* _Jean-François Alcover_, Sep 19 2018 *) %o A293006 (PARI) concat(vector(2), Vec(2*x^2*(1 + x) / ((1 - x)*(1 - 2*x - 2*x^2)) + O(x^30))) \\ _Colin Barker_, Sep 28 2017 %Y A293006 Cf. A002605, A028860, A293005, A293007. %K A293006 nonn,easy %O A293006 0,3 %A A293006 _J. Devillet_, Sep 28 2017