This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293011 #32 Nov 23 2019 00:50:43 %S A293011 1,2,6,4,32,48,16,8,288,64,128,8196,256,2048,16896,278528,2097664, %T A293011 589824,4096,8192,8388609,16384,536870944,268435488,65536,32768, %U A293011 268959744,17179869440,524288,4294967298,1048576,8589934594,8589934596 %N A293011 a(n) is the smallest positive k such that f(k) = n*g(k) where f = A007953 and g = A000120, or 0 if no such k exists. %C A293011 Conjecture: a(n) > 0 for all n >= 1. %C A293011 Numbers n such that a(n) is not a power of 2 are 3, 6, 9, 12, 15, 16, 17, 18, ... %C A293011 a(21) = 8388609 = 2^23 + 1 is the second odd term of this sequence after a(1) = 1. %C A293011 Smallest n such that a(n + 1) = a(n) + 2 is 32 and a(32) = 2*(2^32 + 1). %C A293011 For n <= 170, A000120(a(n)) <= 2. - _Robert Israel_, Nov 22 2019 %H A293011 Robert Israel, <a href="/A293011/b293011.txt">Table of n, a(n) for n = 1..170</a> %H A293011 Robert Israel, <a href="/A293011/a293011.png">Color-coded logarithmic plot</a> %e A293011 a(9) = 288 = 2^8 + 2^5 because A007953(288) = 2 + 8 + 8 = 18, 18 / 2 = 9 and 288 is the least number with this property. %p A293011 # This code returns a(n) if A000120(a(n)) <= 3 and it can prove that no %p A293011 # smaller number with A000120 >= 4 can have A007953 large enough. If it %p A293011 # can't prove that, it returns FAIL. %p A293011 sdd:= n -> convert(convert(n,base,10),`+`): %p A293011 g:= proc(n) local found, k1, k2, k3, x, y, m,bd; %p A293011 found:= false; %p A293011 for k1 from 1 while not found do %p A293011 for k2 from 0 to k1-1 do %p A293011 x:= 2^k1 + 2^k2; %p A293011 if sdd(x) = 2*n then found:= true; break fi %p A293011 od od; %p A293011 for k1 from 0 to ilog2(x) do %p A293011 if sdd(2^k1) = n then x:= 2^k1; break fi %p A293011 od; %p A293011 m:= ilog10(x); %p A293011 bd:= floor(x/10^m)+9*m; %p A293011 if bd <= 3*n then return x fi; %p A293011 found:= false; %p A293011 for k1 from 2 to ilog2(x) while not found do %p A293011 for k2 from 1 to k1-1 while not found do %p A293011 for k3 from 0 to k2-1 do %p A293011 y:= 2^k1 + 2^k2 + 2^k3; %p A293011 if y > x or sdd(y) = 3*n then found:= true; break fi; %p A293011 od od od; %p A293011 if found then x:= min(x,y) fi; %p A293011 bd:= floor(x/10^m)+9*m; %p A293011 if bd <= 4*n then x else FAIL fi; %p A293011 end proc: %p A293011 map(g, [$1..50]); # _Robert Israel_, Nov 22 2019 %o A293011 (PARI) a(n) = {my(k=1); while ((hammingweight(k))*n != sumdigits(k), k++); k; } %Y A293011 Cf. A000120, A001370, A007953. %K A293011 nonn,base,look %O A293011 1,2 %A A293011 _Altug Alkan_, Sep 28 2017