This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293014 #18 Oct 12 2017 03:20:55 %S A293014 0,0,0,0,1,1,2,2,4,6,11,17,28,44,72,116,189,305,494,798,1292,2090, %T A293014 3383,5473,8856,14328,23184,37512,60697,98209,158906,257114,416020, %U A293014 673134,1089155,1762289,2851444,4613732,7465176,12078908 %N A293014 a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) for n > 4, where a(n)=0 for n < 4 and a(4) = 1. %C A293014 The interest of this sequence is mainly in the array of its successive differences, the diagonals of which are closely related to the Jacobsthal numbers A001045. %C A293014 Successive differences begin: %C A293014 0, 0, 0, 0, 1, 1, 2, 2, 4, 6, 11, 17, 28, 44, ... %C A293014 0, 0, 0, 1, 0, 1, 0, 2, 2, 5, 6, 11, 16, 28, ... %C A293014 0, 0, 1, -1, 1, -1, 2, 0, 3, 1, 5, 5, 12, 16, ... %C A293014 0, 1, -2, 2, -2, 3, -2, 3, -2, 4, 0, 7, 4, 13, ... %C A293014 1, -3, 4, -4, 5, -5, 5, -5, 6, -4, 7, -3, 9, 1, ... %C A293014 -4, 7, -8, 9, -10, 10, -10, 11, -10, 11, -10, 12, -8, 15, ... %C A293014 ... %C A293014 The main diagonal d0 (0, 1, 2, 5, 10, 21, 42, 85, ...) (with initial zero dropped) consists of the Lichtenberg numbers A000975. %C A293014 Likewise, the first upper subdiagonal d1 (0, -1, -2, -5, -10, -21, -42, -85, ...) is the negated Lichtenberg numbers (so is d3). %C A293014 The second upper subdiagonal d2 (0, 1, 1, 3, 5, 11, 21, 43, 85, ...) is the Jacobsthal numbers. %C A293014 Subdiagonal d4 (1, 1, 2, 3, 6, 11, 22, 43, 86, ...) is A005578. %C A293014 Subdiagonal d5 (1, 0, 0, -2, -4, -10, -20, -42, -84, ...) is negated A026644 from the 4th term on. %H A293014 G. C. Greubel, <a href="/A293014/b293014.txt">Table of n, a(n) for n = 0..1000</a> %H A293014 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,1,1). %F A293014 G.f.: x^4/(1 - x - x^2 + x^3 - x^4 - x^5). %t A293014 LinearRecurrence[{1, 1, -1, 1, 1}, {0, 0, 0, 0, 1}, 40] %o A293014 (PARI) a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,1,-1,1,1]^n)[1,5] \\ _Charles R Greathouse IV_, Sep 28 2017 %Y A293014 Cf. A000975, A001045, A005578, A026644. %K A293014 nonn,easy %O A293014 0,7 %A A293014 _Jean-François Alcover_ and _Paul Curtz_, Sep 28 2017