This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293024 #51 Jan 05 2025 19:51:41 %S A293024 1,1,1,1,0,2,1,0,1,5,1,0,0,1,15,1,0,0,1,4,52,1,0,0,0,1,11,203,1,0,0,0, %T A293024 1,1,41,877,1,0,0,0,0,1,11,162,4140,1,0,0,0,0,1,1,36,715,21147,1,0,0, %U A293024 0,0,0,1,1,92,3425,115975,1,0,0,0,0,0,1,1,36,491,17722,678570 %N A293024 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(exp(x) - Sum_{i=0..k} x^i/i!). %C A293024 A(n,k) is the number of set partitions of [n] into blocks of size > k. %H A293024 Seiichi Manyama, <a href="/A293024/b293024.txt">Antidiagonals n = 0..139, flattened</a> %H A293024 E. A. Enneking and J. C. Ahuja, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/14-1/enneking.pdf">Generalized Bell numbers</a>, Fib. Quart., 14 (1976), 67-73. %F A293024 E.g.f. of column k: Product_{i>k} exp(x^i/i!). %F A293024 A(0,k) = 1, A(1,k) = A(2,k) = ... = A(k,k) = 0 and A(n,k) = Sum_{i=k..n-1} binomial(n-1,i)*A(n-1-i,k) for n > k. %e A293024 Square array begins: %e A293024 1, 1, 1, 1, 1, 1, 1, 1, ... %e A293024 1, 0, 0, 0, 0, 0, 0, 0, ... %e A293024 2, 1, 0, 0, 0, 0, 0, 0, ... %e A293024 5, 1, 1, 0, 0, 0, 0, 0, ... %e A293024 15, 4, 1, 1, 0, 0, 0, 0, ... %e A293024 52, 11, 1, 1, 1, 0, 0, 0, ... %e A293024 203, 41, 11, 1, 1, 1, 0, 0, ... %e A293024 877, 162, 36, 1, 1, 1, 1, 0, ... %p A293024 A:= proc(n, k) option remember; `if`(n=0, 1, add( %p A293024 A(n-j, k)*binomial(n-1, j-1), j=1+k..n)) %p A293024 end: %p A293024 seq(seq(A(n, d-n), n=0..d), d=0..14); # _Alois P. Heinz_, Sep 28 2017 %t A293024 A[0, _] = 1; %t A293024 A[n_, k_] /; 0 <= k <= n := A[n, k] = Sum[A[n-j, k] Binomial[n-1, j-1], {j, k+1, n}]; %t A293024 A[_, _] = 0; %t A293024 Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Dec 06 2019 *) %o A293024 (Ruby) %o A293024 def ncr(n, r) %o A293024 return 1 if r == 0 %o A293024 (n - r + 1..n).inject(:*) / (1..r).inject(:*) %o A293024 end %o A293024 def A(k, n) %o A293024 ary = [1] %o A293024 (1..n).each{|i| ary << (k..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ary[-1 - j]}} %o A293024 ary %o A293024 end %o A293024 def A293024(n) %o A293024 a = [] %o A293024 (0..n).each{|i| a << A(i, n - i)} %o A293024 ary = [] %o A293024 (0..n).each{|i| %o A293024 (0..i).each{|j| %o A293024 ary << a[i - j][j] %o A293024 } %o A293024 } %o A293024 ary %o A293024 end %o A293024 p A293024(20) %Y A293024 Columns k=0..5 give A000110, A000296, A006505, A057837, A057814, A293025. %Y A293024 Rows n=0..1 give A000012, A000007. %Y A293024 Main diagonal gives A000007. %Y A293024 Cf. A182931, A282988 (as triangle), A293051, A293053. %K A293024 nonn,tabl %O A293024 0,6 %A A293024 _Seiichi Manyama_, Sep 28 2017