cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293056 Rectangular array by antidiagonals: T(n,m) = rank of n*log(2)+m when all the numbers k*log(2)+h, for k >= 1, h >= 0, are jointly ranked.

This page as a plain text file.
%I A293056 #6 Oct 06 2017 21:34:46
%S A293056 1,3,2,6,5,4,11,9,8,7,17,15,13,12,10,25,22,20,18,16,14,34,31,28,26,23,
%T A293056 21,19,45,41,38,35,32,29,27,24,57,53,49,46,42,39,36,33,30,70,66,62,58,
%U A293056 54,50,47,43,40,37,85,80,76,72,67,63,59,55,51,48,44,101
%N A293056 Rectangular array by antidiagonals: T(n,m) = rank of n*log(2)+m when all the numbers k*log(2)+h, for k >= 1, h >= 0, are jointly ranked.
%C A293056 Every positive integer occurs exactly once, so that as a sequence, this is a permutation of the positive integers. As an array, this is the interspersion of 1/log(2); see A283962.
%H A293056 Clark Kimberling, <a href="/A293056/b293056.txt">Antidiagonals n=1..60, flattened</a>
%F A293056 T(n,m) = Sum_{k=1...n + [m/r]} m+1+[(n-k)r], where r = log(2) and [ ]=floor.
%e A293056 Northwest corner:
%e A293056 1      3      6      11     17     25     34
%e A293056 2      5      9      15     22     31     41
%e A293056 4      8      13     20     28     38     49
%e A293056 7      12     18     26     35     46     58
%e A293056 10     16     23     32     42     54     67
%e A293056 14     21     29     39     50     63     77
%e A293056 19     27     36     47     59     73     88
%e A293056 24     33     43     55     68     83     99
%e A293056 30     40     51     64     78     94     111
%e A293056 The numbers k*r+h, approximately:
%e A293056 (for k=1):   0.693   1.693   2.693 ...
%e A293056 (for k=2):   1.386   2.386   3.386 ...
%e A293056 (for k=3):   2.079   3.079   4.079 ...
%e A293056 Replacing each k*r+h by its rank gives
%e A293056 1    3    6
%e A293056 2    5    9
%e A293056 4    8    13
%t A293056 r = Log[2]; z = 12;
%t A293056 t[n_, m_] := Sum[Floor[1 + m + (n - k) r], {k, 1, n + Floor[m/r]}];
%t A293056 u = Table[t[n, m], {n, 1, z}, {m, 0, z}]
%t A293056 Grid[u] (* A293056 array *)
%t A293056 Table[t[n - k + 1, k - 1], {n, 1, z}, {k, n, 1, -1}] // Flatten  (* A293056 sequence *)
%Y A293056 Cf. A283962.
%K A293056 nonn,easy,tabl
%O A293056 1,2
%A A293056 _Clark Kimberling_, Oct 06 2017