This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293060 #17 Feb 21 2024 08:20:09 %S A293060 1,2,2,10,7,17,32,67,80,219,227,343,1076,1594,4783,955 %N A293060 Triangle read by rows (n >= 0, 0 <= k <= n): T(n,k) = number of k-dimensional subperiodic groups in n-dimensional space, not counting enantiomorphs. %C A293060 T(n,0) count n-dimensional crystallographic point groups (i.e., left border is A004028), T(n,n) count n-dimensional space groups (i.e., right border is A004029). The name "subperiodic groups" is usually related to the case 0 < k < n only, i.e., symmetry groups of n-dimensional objects including k independent translations which are subgroups of some n-dimensional space groups. %C A293060 The Bohm symbols for these groups are G_{n,k}, except for the case k=n, when it is G_n. %C A293060 Some groups have their own names: %C A293060 T(2,1): frieze groups %C A293060 T(2,2): wallpaper groups %C A293060 T(3,1): rod groups %C A293060 T(3,2): layer groups %C A293060 See [Palistrant, 2012, p. 476] for row 4. %H A293060 M. I. Aroyo et al, <a href="http://www.cryst.ehu.es/">Bilbao Crystallographic Server</a> %H A293060 International Union of Crystallography, <a href="http://it.iucr.org/">International Tables for Crystallography</a>, volumes A and E. %H A293060 A. F. Palistrant, <a href="https://doi.org/10.1134/S1063774512040104">Complete scheme of four-dimensional crystallographic symmetry groups</a>, Crystallography Reports, 57 (2012), 471-477. %H A293060 W. Plesken and T. Schulz, <a href="http://wwwb.math.rwth-aachen.de/carat/">CARAT Homepage</a> %H A293060 W. Plesken and T. Schulz, <a href="/A006226/a006226.pdf">CARAT Homepage</a> [Cached copy in pdf format (without subsidiary pages), with permission] %H A293060 B. Souvignier, <a href="https://doi.org/10.1524/zkri.2006.221.1.77">The four-dimensional magnetic point and space groups</a>, Z. Kristallogr., 221 (2006), 77-82. %H A293060 Wikipedia: <a href="https://en.wikipedia.org/wiki/Space_group">Space group</a>, <a href="https://en.wikipedia.org/wiki/Crystallographic_point_group">Crystallographic point group</a>, <a href="https://en.wikipedia.org/wiki/Line_group">Line group</a>, <a href="https://en.wikipedia.org/wiki/Frieze_group">Frieze group</a>, <a href="https://en.wikipedia.org/wiki/Wallpaper_group">Wallpaper group</a>, <a href="https://en.wikipedia.org/wiki/Rod_group">Rod group</a>, <a href="https://en.wikipedia.org/wiki/Layer_group">Layer group</a> %H A293060 <a href="/index/Gre#groups">Index entries for sequences related to groups</a> %e A293060 The triangle begins: %e A293060 1; %e A293060 2, 2; %e A293060 10, 7, 17; %e A293060 32, 67, 80, 219; %e A293060 227, 343, 1076, 1594, 4783; %e A293060 955, ... %Y A293060 Cf. A004028, A004029, A293061, A293062, A293063. %K A293060 nonn,tabl,hard,more %O A293060 0,2 %A A293060 _Andrey Zabolotskiy_, Sep 29 2017