This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293110 #23 Jun 07 2018 03:53:33 %S A293110 1,1,3,7,20,54,164,500,1630,5472,19257,70133,265858,1042346,4235031, %T A293110 17760943,76913277,342919431,1573637985,7415371293,35860511131, %U A293110 177641956111,900782461170,4668600610346,24714284921937,133467868645017,734844788634269,4120752558254581 %N A293110 Number of multisets of nonempty words with a total of n letters over n-ary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter. %H A293110 Alois P. Heinz, <a href="/A293110/b293110.txt">Table of n, a(n) for n = 0..800</a> %F A293110 G.f.: Product_{j>=1} 1/(1-x^j)^A000085(j). %e A293110 a(0) = 1: {}. %e A293110 a(1) = 1: {a} %e A293110 a(2) = 3: {a,a}, {aa}, {ab}. %e A293110 a(3) = 7: {a,a,a}, {a,aa}, {a,ab}, {aaa}, {aab}, {aba}, {abc}. %p A293110 g:= proc(n) option remember; %p A293110 `if`(n<2, 1, g(n-1)+(n-1)*g(n-2)) %p A293110 end: %p A293110 a:= proc(n) option remember; `if`(n=0, 1, add(add(g(d) %p A293110 *d, d=numtheory[divisors](j))*a(n-j), j=1..n)/n) %p A293110 end: %p A293110 seq(a(n), n=0..40); %t A293110 g[n_] := g[n] = If[n < 2, 1, g[n - 1] + (n - 1)*g[n - 2]]; %t A293110 a[n_] := a[n] = If[n == 0, 1, Sum[Sum[g[d]*d, {d, Divisors[j]}]*a[n - j], {j, 1, n}]/n]; %t A293110 Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Jun 07 2018, from Maple *) %Y A293110 Main diagonal of A293108. %Y A293110 Row sums of A293109 and of A293808. %Y A293110 Cf. A000085, A182172, A293114. %K A293110 nonn %O A293110 0,3 %A A293110 _Alois P. Heinz_, Sep 30 2017