This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293133 #23 Oct 23 2018 11:09:31 %S A293133 1,1,1,1,0,-1,1,0,2,1,1,0,0,-6,1,1,0,0,6,36,-19,1,0,0,0,-24,-240,151, %T A293133 1,0,0,0,24,120,1920,-1091,1,0,0,0,0,-120,-360,-17640,7841,1,0,0,0,0, %U A293133 120,720,0,183120,-56519,1,0,0,0,0,0,-720,-5040,20160,-2116800 %N A293133 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(x^(k+1)/(1+x)). %H A293133 Seiichi Manyama, <a href="/A293133/b293133.txt">Antidiagonals n = 0..139, flattened</a> %F A293133 A(0,k) = 1, A(1,k) = A(2,k) = ... = A(k,k) = 0 and A(n,k) = (-1)^k * Sum_{i=k..n-1} (-1)^i*(i+1)!*binomial(n-1,i)*A(n-1-i,k) for n > k. %e A293133 Square array begins: %e A293133 1, 1, 1, 1, ... %e A293133 1, 0, 0, 0, ... %e A293133 -1, 2, 0, 0, ... %e A293133 1, -6, 6, 0, ... %e A293133 1, 36, -24, 24, ... %e A293133 -19, -240, 120, -120, ... %o A293133 (Ruby) %o A293133 def f(n) %o A293133 return 1 if n < 2 %o A293133 (1..n).inject(:*) %o A293133 end %o A293133 def ncr(n, r) %o A293133 return 1 if r == 0 %o A293133 (n - r + 1..n).inject(:*) / (1..r).inject(:*) %o A293133 end %o A293133 def A(k, n) %o A293133 ary = [1] %o A293133 (1..n).each{|i| ary << (-1) ** (k % 2) * (k..i - 1).inject(0){|s, j| s + (-1) ** (j % 2) * f(j + 1) * ncr(i - 1, j) * ary[i - 1 - j]}} %o A293133 ary %o A293133 end %o A293133 def A293133(n) %o A293133 a = [] %o A293133 (0..n).each{|i| a << A(i, n - i)} %o A293133 ary = [] %o A293133 (0..n).each{|i| %o A293133 (0..i).each{|j| %o A293133 ary << a[i - j][j] %o A293133 } %o A293133 } %o A293133 ary %o A293133 end %o A293133 p A293133(20) %Y A293133 Columns k=0..2 give A111884, A293120, A293121. %Y A293133 Rows n=0..1 give A000012, A000007. %Y A293133 Main diagonal gives A000007. %Y A293133 A(n,n-1) gives A000142(n). %Y A293133 Cf. A293053, A293119, A293134, %K A293133 sign,tabl %O A293133 0,9 %A A293133 _Seiichi Manyama_, Sep 30 2017