This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293136 #22 Jan 29 2024 11:20:37 %S A293136 1,0,1,0,1,0,1,2,0,1,2,1,0,1,4,1,0,1,4,5,0,1,6,6,2,0,1,6,10,4,0,1,8, %T A293136 14,6,1,0,1,8,19,14,1,0,1,10,23,20,5,0,1,10,31,30,10,0,1,12,36,42,18, %U A293136 2,0,1,12,44,60,27,4,0,1,14,52,76,48,8,0,1,14,61,102,68,16,1,0,1,16,69,126,101,30,1,0,1,16,81,160,138,50,5,0 %N A293136 Irregular triangle T(n,k) read by rows: T(n,k) is the number of strongly unimodal compositions of n (A059618) into k parts. %C A293136 Conjecture: index k of last nonzero entry in row n of is A293137(n). %H A293136 Joerg Arndt, <a href="/A293136/b293136.txt">Table of n, a(n) for n = 0..1793</a> (rows 0...125) %F A293136 G.f.: 1 + Sum_{n>=1} t*x^n * ( Product_{k=1..n-1} 1 + t*x^k )^2. %e A293136 Triangle starts: %e A293136 00: [1] %e A293136 01: [0, 1] %e A293136 02: [0, 1] %e A293136 03: [0, 1, 2] %e A293136 04: [0, 1, 2, 1] %e A293136 05: [0, 1, 4, 1] %e A293136 06: [0, 1, 4, 5] %e A293136 07: [0, 1, 6, 6, 2] %e A293136 08: [0, 1, 6, 10, 4] %e A293136 09: [0, 1, 8, 14, 6, 1] %e A293136 10: [0, 1, 8, 19, 14, 1] %e A293136 11: [0, 1, 10, 23, 20, 5] %e A293136 12: [0, 1, 10, 31, 30, 10] %e A293136 13: [0, 1, 12, 36, 42, 18, 2] %e A293136 14: [0, 1, 12, 44, 60, 27, 4] %e A293136 15: [0, 1, 14, 52, 76, 48, 8] %e A293136 16: [0, 1, 14, 61, 102, 68, 16, 1] %e A293136 17: [0, 1, 16, 69, 126, 101, 30, 1] %e A293136 18: [0, 1, 16, 81, 160, 138, 50, 5] %e A293136 19: [0, 1, 18, 90, 194, 191, 80, 10] %e A293136 20: [0, 1, 18, 102, 238, 252, 118, 22] %e A293136 ... %e A293136 Row n=7 is [0, 1, 6, 6, 2] because in the 15 partitions of 7 there is 0 into zero parts, 1 into one part, 6 into two parts, 6 into three parts, and 2 into four parts: %e A293136 [ 1] [ 1 2 3 1 ] %e A293136 [ 2] [ 1 2 4 ] %e A293136 [ 3] [ 1 3 2 1 ] %e A293136 [ 4] [ 1 4 2 ] %e A293136 [ 5] [ 1 5 1 ] %e A293136 [ 6] [ 1 6 ] %e A293136 [ 7] [ 2 3 2 ] %e A293136 [ 8] [ 2 4 1 ] %e A293136 [ 9] [ 2 5 ] %e A293136 [10] [ 3 4 ] %e A293136 [11] [ 4 2 1 ] %e A293136 [12] [ 4 3 ] %e A293136 [13] [ 5 2 ] %e A293136 [14] [ 6 1 ] %e A293136 [15] [ 7 ] %o A293136 (PARI) N=25; x='x+O('x^N); %o A293136 T=Vec(1 + sum(n=1, N, t*x^(n) * prod(k=1, n-1, 1+t*x^k)^2)); %o A293136 for(r=1,#T, print(Vecrev(T[r])) ); \\ as triangle %Y A293136 Cf. A059618 (row sums), A293137. %Y A293136 Cf. A072704 (same for weakly unimodal compositions). %K A293136 nonn,tabf %O A293136 0,8 %A A293136 _Joerg Arndt_, Oct 01 2017