cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293138 E.g.f.: Product_{m>0} (1+x^m+x^(2*m)/2!).

This page as a plain text file.
%I A293138 #50 Nov 01 2020 06:07:58
%S A293138 1,1,3,12,72,480,3780,35280,372960,4263840,54432000,758419200,
%T A293138 11436163200,185253868800,3214699488000,59172265152000,
%U A293138 1163830187520000,24097823253504000,525794940582912000,12073276215576576000,290883846352619520000,7318777466097377280000
%N A293138 E.g.f.: Product_{m>0} (1+x^m+x^(2*m)/2!).
%H A293138 Seiichi Manyama, <a href="/A293138/b293138.txt">Table of n, a(n) for n = 0..444</a>
%F A293138 a(n) ~ c^(1/4) * exp(2*sqrt(c*n) - n) * n^(n+1/2) / (sqrt(5) * n^(3/4)), where c = -polylog(2, -1/2 - I/2) - polylog(2, -1/2 + I/2) = 0.9669456127221570300837545... Equivalently, c = -Sum_{k>=1} (-1)^k * cos(Pi*k/4) / (k^2 * 2^(k/2-1)). - _Vaclav Kotesovec_, Oct 01 2017
%e A293138 Let's consider the partitions of n where no positive integer appears more than twice. (See A000726)
%e A293138 For n = 5,
%e A293138     partition      |                         |
%e A293138 --------------------------------------------------------------------
%e A293138      5             -> one 5                  -> 1/(1!)       (= 1  )
%e A293138    = 4 + 1         -> one 4 and one 1        -> 1/(1!*1!)    (= 1  )
%e A293138    = 3 + 2         -> one 3 and one 2        -> 1/(1!*1!)    (= 1  )
%e A293138    = 3 + 1 + 1     -> one 3 and two 1        -> 1/(1!*2!)    (= 1/2)
%e A293138    = 2 + 2 + 1     -> two 2 and one 1        -> 1/(2!*1!)    (= 1/2)
%e A293138 --------------------------------------------------------------------
%e A293138                                                 sum             4
%e A293138 So a(5) = 5! * 4 = 480.
%e A293138 For n = 6,
%e A293138     partition      |                         |
%e A293138 --------------------------------------------------------------------
%e A293138      6             -> one 6                  -> 1/(1!)       (= 1  )
%e A293138    = 5 + 1         -> one 5 and one 1        -> 1/(1!*1!)    (= 1  )
%e A293138    = 4 + 2         -> one 4 and one 2        -> 1/(1!*1!)    (= 1  )
%e A293138    = 4 + 1 + 1     -> one 4 and two 1        -> 1/(1!*2!)    (= 1/2)
%e A293138    = 3 + 3         -> two 3                  -> 1/(2!)       (= 1/2)
%e A293138    = 3 + 2 + 1     -> one 3, one 2 and one 1 -> 1/(1!*1!*1!) (= 1  )
%e A293138    = 2 + 2 + 1 + 1 -> two 2 and two 1        -> 1/(2!*2!)    (= 1/4)
%e A293138 --------------------------------------------------------------------
%e A293138                                                 sum            21/4
%e A293138 So a(6) = 6! * 21/4 = 3780.
%p A293138 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p A293138       add(b(n-i*j, i-1)/j!, j=0..min(2, n/i))))
%p A293138     end:
%p A293138 a:= n-> n!*b(n$2):
%p A293138 seq(a(n), n=0..23);  # _Alois P. Heinz_, Oct 02 2017
%t A293138 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, i - 1]/j!, {j, 0, Min[2, n/i]}]]];
%t A293138 a[n_] := n! b[n, n];
%t A293138 a /@ Range[0, 23] (* _Jean-François Alcover_, Nov 01 2020, after _Alois P. Heinz_ *)
%Y A293138 Column k=2 of A293135.
%Y A293138 Cf. A000726, A162891, A263401, A293141.
%K A293138 nonn
%O A293138 0,3
%A A293138 _Seiichi Manyama_, Oct 01 2017