This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293138 #50 Nov 01 2020 06:07:58 %S A293138 1,1,3,12,72,480,3780,35280,372960,4263840,54432000,758419200, %T A293138 11436163200,185253868800,3214699488000,59172265152000, %U A293138 1163830187520000,24097823253504000,525794940582912000,12073276215576576000,290883846352619520000,7318777466097377280000 %N A293138 E.g.f.: Product_{m>0} (1+x^m+x^(2*m)/2!). %H A293138 Seiichi Manyama, <a href="/A293138/b293138.txt">Table of n, a(n) for n = 0..444</a> %F A293138 a(n) ~ c^(1/4) * exp(2*sqrt(c*n) - n) * n^(n+1/2) / (sqrt(5) * n^(3/4)), where c = -polylog(2, -1/2 - I/2) - polylog(2, -1/2 + I/2) = 0.9669456127221570300837545... Equivalently, c = -Sum_{k>=1} (-1)^k * cos(Pi*k/4) / (k^2 * 2^(k/2-1)). - _Vaclav Kotesovec_, Oct 01 2017 %e A293138 Let's consider the partitions of n where no positive integer appears more than twice. (See A000726) %e A293138 For n = 5, %e A293138 partition | | %e A293138 -------------------------------------------------------------------- %e A293138 5 -> one 5 -> 1/(1!) (= 1 ) %e A293138 = 4 + 1 -> one 4 and one 1 -> 1/(1!*1!) (= 1 ) %e A293138 = 3 + 2 -> one 3 and one 2 -> 1/(1!*1!) (= 1 ) %e A293138 = 3 + 1 + 1 -> one 3 and two 1 -> 1/(1!*2!) (= 1/2) %e A293138 = 2 + 2 + 1 -> two 2 and one 1 -> 1/(2!*1!) (= 1/2) %e A293138 -------------------------------------------------------------------- %e A293138 sum 4 %e A293138 So a(5) = 5! * 4 = 480. %e A293138 For n = 6, %e A293138 partition | | %e A293138 -------------------------------------------------------------------- %e A293138 6 -> one 6 -> 1/(1!) (= 1 ) %e A293138 = 5 + 1 -> one 5 and one 1 -> 1/(1!*1!) (= 1 ) %e A293138 = 4 + 2 -> one 4 and one 2 -> 1/(1!*1!) (= 1 ) %e A293138 = 4 + 1 + 1 -> one 4 and two 1 -> 1/(1!*2!) (= 1/2) %e A293138 = 3 + 3 -> two 3 -> 1/(2!) (= 1/2) %e A293138 = 3 + 2 + 1 -> one 3, one 2 and one 1 -> 1/(1!*1!*1!) (= 1 ) %e A293138 = 2 + 2 + 1 + 1 -> two 2 and two 1 -> 1/(2!*2!) (= 1/4) %e A293138 -------------------------------------------------------------------- %e A293138 sum 21/4 %e A293138 So a(6) = 6! * 21/4 = 3780. %p A293138 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A293138 add(b(n-i*j, i-1)/j!, j=0..min(2, n/i)))) %p A293138 end: %p A293138 a:= n-> n!*b(n$2): %p A293138 seq(a(n), n=0..23); # _Alois P. Heinz_, Oct 02 2017 %t A293138 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, i - 1]/j!, {j, 0, Min[2, n/i]}]]]; %t A293138 a[n_] := n! b[n, n]; %t A293138 a /@ Range[0, 23] (* _Jean-François Alcover_, Nov 01 2020, after _Alois P. Heinz_ *) %Y A293138 Column k=2 of A293135. %Y A293138 Cf. A000726, A162891, A263401, A293141. %K A293138 nonn %O A293138 0,3 %A A293138 _Seiichi Manyama_, Oct 01 2017