A293147 Triangle read by rows: coefficients of the characteristic polynomial of the n-th submatrix of A191898.
0, 1, -1, -2, 0, 1, 6, 4, -2, -1, 0, -12, -5, 3, 1, 0, 60, 49, -3, -7, -1, 0, 360, 84, -90, -19, 5, 1, 0, -2520, -1308, 414, 241, -5, -11, -1, 0, 0, 3780, 1752, -590, -290, 9, 12, 1, 0, 0, 0, -7560, -2874, 1122, 406, -19, -14, -1
Offset: 0
Examples
0; 1, -1; -2, 0, 1; 6, 4, -2, -1; 0, -12, -5, 3, 1; 0, 60, 49, -3, -7, -1; 0, 360, 84, -90, -19, 5, 1; 0, -2520, -1308, 414, 241, -5, -11, -1; 0, 0, 3780, 1752, -590, -290, 9, 12, 1; 0, 0, 0, -7560, -2874, 1122, 406, -19, -14, -1; ... max(-eigenvalues(A191898(1..12,1..12)))=11.096... max(-eigenvalues(A191898(1..13,1..13)))=12.9021...
Links
Programs
-
Mathematica
Clear[A,B,nnn]; nnn=9; charpol = Table[A = Table[Table[If[Mod[n, k] == 0, 1, 0], {k, 1, nn}], {n, 1, nn}]; B = Table[Table[If[Mod[k, n] == 0, MoebiusMu[n]*n, 0], {k, 1, nn}], {n, 1, nn}]; CoefficientList[CharacteristicPolynomial[A.B, x], x], {nn, 1, nnn}];Flatten[charpol]
Comments