A293171 Triangle read by rows: T(n,k) = number of colored weighted Motzkin paths ending at (n,k).
1, 1, 1, 9, 2, 1, 25, 15, 3, 1, 145, 52, 22, 4, 1, 561, 285, 90, 30, 5, 1, 2841, 1206, 495, 140, 39, 6, 1, 12489, 6027, 2261, 791, 203, 49, 7, 1, 60705, 27560, 11452, 3864, 1190, 280, 60, 8, 1, 281185, 134073, 54468, 20076, 6174, 1710, 372, 72, 9, 1, 1353769, 633130, 268845, 99240, 33090, 9372, 2370, 480, 85, 10, 1
Offset: 0
Examples
Triangle begins: 1, 1,1, 9,2,1, 25,15,3,1, 145,52,22,4,1, 561,285,90,30,5,1, ...
Links
- Sheng-Liang Yang, Yan-Ni Dong, and Tian-Xiao He, Some matrix identities on colored Motzkin paths, Discrete Mathematics 340.12 (2017): 3081-3091. See p. 3087.
Programs
-
Maple
A293171 := proc(n,k) option remember; local b,e,c; b := 1; e:= 2; c := e^2 ; if k < 0 or k > n then 0; elif k = n then 1; elif k = 0 then b*procname(n-1,0)+2*c*procname(n-1,1) ; else procname(n-1,k-1)+b*procname(n-1,k)+c*procname(n-1,k+1) ; end if; end proc: seq(seq( A293171(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Oct 27 2017
-
Mathematica
T[n_, k_] := T[n, k] = Module[{b=1, e=2, c=4}, Which[k<0 || k>n, 0, k==n, 1, k == 0, b*T[n-1, 0] + 2*c*T[n-1, 1], True, T[n-1, k-1] + b*T[n-1, k] + c*T[n-1, k+1]]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 19 2019, after R. J. Mathar *)