A293172 Triangle read by rows: T(n,k) = number of colored weighted Motzkin paths ending at (n,k).
1, 6, 1, 40, 10, 1, 280, 84, 14, 1, 2016, 672, 144, 18, 1, 14784, 5280, 1320, 220, 22, 1, 109824, 41184, 11440, 2288, 312, 26, 1, 823680, 320320, 96096, 21840, 3640, 420, 30, 1, 6223360, 2489344, 792064, 198016, 38080, 5440, 544, 34, 1, 47297536, 19348992, 6449664, 1736448, 372096, 62016, 7752
Offset: 0
Examples
Triangle begins: 1, 6,1, 40,10,1, 280,84,14,1, 2016,672,144,18,1, 14784,5280,1320,220,22,1, ...
Links
- Sheng-Liang Yang, Yan-Ni Dong, and Tian-Xiao He, Some matrix identities on colored Motzkin paths, Discrete Mathematics 340.12 (2017): 3081-3091. See p. 3088.
Crossrefs
First column is A069720.
Programs
-
Maple
A293172 := proc(n,k) option remember; local b,d,r,c,e; b := 4; d:= 2; r := 2 ; c := r^2 ; e := d ; if k < 0 or k > n then 0; elif k = n then 1; elif k = 0 then (b+e)*procname(n-1,0)+c*procname(n-1,1) ; else procname(n-1,k-1)+b*procname(n-1,k)+c*procname(n-1,k+1) ; end if; end proc: seq(seq( A293172(n,k),k=0..n),n=0..15) ; # R. J. Mathar, Oct 27 2017
-
Mathematica
T[n_, k_] := T[n, k] = Module[{b = 4, d = 2, r = 2, c, e}, c = r^2; e = d; If[k < 0 || k > n, 0, If[k == n, 1, If[k == 0, (b + e) T[n - 1, 0] + c T[n - 1, 1], T[n - 1, k - 1] + b T[n - 1, k] + c T[n - 1, k + 1]]]]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 07 2020, from Maple *)